src/HOL/HOLCF/Deflation.thy
changeset 40774 0437dbc127b3
parent 40502 8e92772bc0e8
child 41182 717404c7d59a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Deflation.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,408 @@
+(*  Title:      HOLCF/Deflation.thy
+    Author:     Brian Huffman
+*)
+
+header {* Continuous deflations and ep-pairs *}
+
+theory Deflation
+imports Plain_HOLCF
+begin
+
+default_sort cpo
+
+subsection {* Continuous deflations *}
+
+locale deflation =
+  fixes d :: "'a \<rightarrow> 'a"
+  assumes idem: "\<And>x. d\<cdot>(d\<cdot>x) = d\<cdot>x"
+  assumes below: "\<And>x. d\<cdot>x \<sqsubseteq> x"
+begin
+
+lemma below_ID: "d \<sqsubseteq> ID"
+by (rule cfun_belowI, simp add: below)
+
+text {* The set of fixed points is the same as the range. *}
+
+lemma fixes_eq_range: "{x. d\<cdot>x = x} = range (\<lambda>x. d\<cdot>x)"
+by (auto simp add: eq_sym_conv idem)
+
+lemma range_eq_fixes: "range (\<lambda>x. d\<cdot>x) = {x. d\<cdot>x = x}"
+by (auto simp add: eq_sym_conv idem)
+
+text {*
+  The pointwise ordering on deflation functions coincides with
+  the subset ordering of their sets of fixed-points.
+*}
+
+lemma belowI:
+  assumes f: "\<And>x. d\<cdot>x = x \<Longrightarrow> f\<cdot>x = x" shows "d \<sqsubseteq> f"
+proof (rule cfun_belowI)
+  fix x
+  from below have "f\<cdot>(d\<cdot>x) \<sqsubseteq> f\<cdot>x" by (rule monofun_cfun_arg)
+  also from idem have "f\<cdot>(d\<cdot>x) = d\<cdot>x" by (rule f)
+  finally show "d\<cdot>x \<sqsubseteq> f\<cdot>x" .
+qed
+
+lemma belowD: "\<lbrakk>f \<sqsubseteq> d; f\<cdot>x = x\<rbrakk> \<Longrightarrow> d\<cdot>x = x"
+proof (rule below_antisym)
+  from below show "d\<cdot>x \<sqsubseteq> x" .
+next
+  assume "f \<sqsubseteq> d"
+  hence "f\<cdot>x \<sqsubseteq> d\<cdot>x" by (rule monofun_cfun_fun)
+  also assume "f\<cdot>x = x"
+  finally show "x \<sqsubseteq> d\<cdot>x" .
+qed
+
+end
+
+lemma deflation_strict: "deflation d \<Longrightarrow> d\<cdot>\<bottom> = \<bottom>"
+by (rule deflation.below [THEN UU_I])
+
+lemma adm_deflation: "adm (\<lambda>d. deflation d)"
+by (simp add: deflation_def)
+
+lemma deflation_ID: "deflation ID"
+by (simp add: deflation.intro)
+
+lemma deflation_UU: "deflation \<bottom>"
+by (simp add: deflation.intro)
+
+lemma deflation_below_iff:
+  "\<lbrakk>deflation p; deflation q\<rbrakk> \<Longrightarrow> p \<sqsubseteq> q \<longleftrightarrow> (\<forall>x. p\<cdot>x = x \<longrightarrow> q\<cdot>x = x)"
+ apply safe
+  apply (simp add: deflation.belowD)
+ apply (simp add: deflation.belowI)
+done
+
+text {*
+  The composition of two deflations is equal to
+  the lesser of the two (if they are comparable).
+*}
+
+lemma deflation_below_comp1:
+  assumes "deflation f"
+  assumes "deflation g"
+  shows "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>(g\<cdot>x) = f\<cdot>x"
+proof (rule below_antisym)
+  interpret g: deflation g by fact
+  from g.below show "f\<cdot>(g\<cdot>x) \<sqsubseteq> f\<cdot>x" by (rule monofun_cfun_arg)
+next
+  interpret f: deflation f by fact
+  assume "f \<sqsubseteq> g" hence "f\<cdot>x \<sqsubseteq> g\<cdot>x" by (rule monofun_cfun_fun)
+  hence "f\<cdot>(f\<cdot>x) \<sqsubseteq> f\<cdot>(g\<cdot>x)" by (rule monofun_cfun_arg)
+  also have "f\<cdot>(f\<cdot>x) = f\<cdot>x" by (rule f.idem)
+  finally show "f\<cdot>x \<sqsubseteq> f\<cdot>(g\<cdot>x)" .
+qed
+
+lemma deflation_below_comp2:
+  "\<lbrakk>deflation f; deflation g; f \<sqsubseteq> g\<rbrakk> \<Longrightarrow> g\<cdot>(f\<cdot>x) = f\<cdot>x"
+by (simp only: deflation.belowD deflation.idem)
+
+
+subsection {* Deflations with finite range *}
+
+lemma finite_range_imp_finite_fixes:
+  "finite (range f) \<Longrightarrow> finite {x. f x = x}"
+proof -
+  have "{x. f x = x} \<subseteq> range f"
+    by (clarify, erule subst, rule rangeI)
+  moreover assume "finite (range f)"
+  ultimately show "finite {x. f x = x}"
+    by (rule finite_subset)
+qed
+
+locale finite_deflation = deflation +
+  assumes finite_fixes: "finite {x. d\<cdot>x = x}"
+begin
+
+lemma finite_range: "finite (range (\<lambda>x. d\<cdot>x))"
+by (simp add: range_eq_fixes finite_fixes)
+
+lemma finite_image: "finite ((\<lambda>x. d\<cdot>x) ` A)"
+by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range])
+
+lemma compact: "compact (d\<cdot>x)"
+proof (rule compactI2)
+  fix Y :: "nat \<Rightarrow> 'a"
+  assume Y: "chain Y"
+  have "finite_chain (\<lambda>i. d\<cdot>(Y i))"
+  proof (rule finite_range_imp_finch)
+    show "chain (\<lambda>i. d\<cdot>(Y i))"
+      using Y by simp
+    have "range (\<lambda>i. d\<cdot>(Y i)) \<subseteq> range (\<lambda>x. d\<cdot>x)"
+      by clarsimp
+    thus "finite (range (\<lambda>i. d\<cdot>(Y i)))"
+      using finite_range by (rule finite_subset)
+  qed
+  hence "\<exists>j. (\<Squnion>i. d\<cdot>(Y i)) = d\<cdot>(Y j)"
+    by (simp add: finite_chain_def maxinch_is_thelub Y)
+  then obtain j where j: "(\<Squnion>i. d\<cdot>(Y i)) = d\<cdot>(Y j)" ..
+
+  assume "d\<cdot>x \<sqsubseteq> (\<Squnion>i. Y i)"
+  hence "d\<cdot>(d\<cdot>x) \<sqsubseteq> d\<cdot>(\<Squnion>i. Y i)"
+    by (rule monofun_cfun_arg)
+  hence "d\<cdot>x \<sqsubseteq> (\<Squnion>i. d\<cdot>(Y i))"
+    by (simp add: contlub_cfun_arg Y idem)
+  hence "d\<cdot>x \<sqsubseteq> d\<cdot>(Y j)"
+    using j by simp
+  hence "d\<cdot>x \<sqsubseteq> Y j"
+    using below by (rule below_trans)
+  thus "\<exists>j. d\<cdot>x \<sqsubseteq> Y j" ..
+qed
+
+end
+
+lemma finite_deflation_intro:
+  "deflation d \<Longrightarrow> finite {x. d\<cdot>x = x} \<Longrightarrow> finite_deflation d"
+by (intro finite_deflation.intro finite_deflation_axioms.intro)
+
+lemma finite_deflation_imp_deflation:
+  "finite_deflation d \<Longrightarrow> deflation d"
+unfolding finite_deflation_def by simp
+
+lemma finite_deflation_UU: "finite_deflation \<bottom>"
+by default simp_all
+
+
+subsection {* Continuous embedding-projection pairs *}
+
+locale ep_pair =
+  fixes e :: "'a \<rightarrow> 'b" and p :: "'b \<rightarrow> 'a"
+  assumes e_inverse [simp]: "\<And>x. p\<cdot>(e\<cdot>x) = x"
+  and e_p_below: "\<And>y. e\<cdot>(p\<cdot>y) \<sqsubseteq> y"
+begin
+
+lemma e_below_iff [simp]: "e\<cdot>x \<sqsubseteq> e\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y"
+proof
+  assume "e\<cdot>x \<sqsubseteq> e\<cdot>y"
+  hence "p\<cdot>(e\<cdot>x) \<sqsubseteq> p\<cdot>(e\<cdot>y)" by (rule monofun_cfun_arg)
+  thus "x \<sqsubseteq> y" by simp
+next
+  assume "x \<sqsubseteq> y"
+  thus "e\<cdot>x \<sqsubseteq> e\<cdot>y" by (rule monofun_cfun_arg)
+qed
+
+lemma e_eq_iff [simp]: "e\<cdot>x = e\<cdot>y \<longleftrightarrow> x = y"
+unfolding po_eq_conv e_below_iff ..
+
+lemma p_eq_iff:
+  "\<lbrakk>e\<cdot>(p\<cdot>x) = x; e\<cdot>(p\<cdot>y) = y\<rbrakk> \<Longrightarrow> p\<cdot>x = p\<cdot>y \<longleftrightarrow> x = y"
+by (safe, erule subst, erule subst, simp)
+
+lemma p_inverse: "(\<exists>x. y = e\<cdot>x) = (e\<cdot>(p\<cdot>y) = y)"
+by (auto, rule exI, erule sym)
+
+lemma e_below_iff_below_p: "e\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> p\<cdot>y"
+proof
+  assume "e\<cdot>x \<sqsubseteq> y"
+  then have "p\<cdot>(e\<cdot>x) \<sqsubseteq> p\<cdot>y" by (rule monofun_cfun_arg)
+  then show "x \<sqsubseteq> p\<cdot>y" by simp
+next
+  assume "x \<sqsubseteq> p\<cdot>y"
+  then have "e\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>y)" by (rule monofun_cfun_arg)
+  then show "e\<cdot>x \<sqsubseteq> y" using e_p_below by (rule below_trans)
+qed
+
+lemma compact_e_rev: "compact (e\<cdot>x) \<Longrightarrow> compact x"
+proof -
+  assume "compact (e\<cdot>x)"
+  hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> y)" by (rule compactD)
+  hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> e\<cdot>y)" by (rule adm_subst [OF cont_Rep_cfun2])
+  hence "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" by simp
+  thus "compact x" by (rule compactI)
+qed
+
+lemma compact_e: "compact x \<Longrightarrow> compact (e\<cdot>x)"
+proof -
+  assume "compact x"
+  hence "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" by (rule compactD)
+  hence "adm (\<lambda>y. \<not> x \<sqsubseteq> p\<cdot>y)" by (rule adm_subst [OF cont_Rep_cfun2])
+  hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> y)" by (simp add: e_below_iff_below_p)
+  thus "compact (e\<cdot>x)" by (rule compactI)
+qed
+
+lemma compact_e_iff: "compact (e\<cdot>x) \<longleftrightarrow> compact x"
+by (rule iffI [OF compact_e_rev compact_e])
+
+text {* Deflations from ep-pairs *}
+
+lemma deflation_e_p: "deflation (e oo p)"
+by (simp add: deflation.intro e_p_below)
+
+lemma deflation_e_d_p:
+  assumes "deflation d"
+  shows "deflation (e oo d oo p)"
+proof
+  interpret deflation d by fact
+  fix x :: 'b
+  show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
+    by (simp add: idem)
+  show "(e oo d oo p)\<cdot>x \<sqsubseteq> x"
+    by (simp add: e_below_iff_below_p below)
+qed
+
+lemma finite_deflation_e_d_p:
+  assumes "finite_deflation d"
+  shows "finite_deflation (e oo d oo p)"
+proof
+  interpret finite_deflation d by fact
+  fix x :: 'b
+  show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
+    by (simp add: idem)
+  show "(e oo d oo p)\<cdot>x \<sqsubseteq> x"
+    by (simp add: e_below_iff_below_p below)
+  have "finite ((\<lambda>x. e\<cdot>x) ` (\<lambda>x. d\<cdot>x) ` range (\<lambda>x. p\<cdot>x))"
+    by (simp add: finite_image)
+  hence "finite (range (\<lambda>x. (e oo d oo p)\<cdot>x))"
+    by (simp add: image_image)
+  thus "finite {x. (e oo d oo p)\<cdot>x = x}"
+    by (rule finite_range_imp_finite_fixes)
+qed
+
+lemma deflation_p_d_e:
+  assumes "deflation d"
+  assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
+  shows "deflation (p oo d oo e)"
+proof -
+  interpret d: deflation d by fact
+  {
+    fix x
+    have "d\<cdot>(e\<cdot>x) \<sqsubseteq> e\<cdot>x"
+      by (rule d.below)
+    hence "p\<cdot>(d\<cdot>(e\<cdot>x)) \<sqsubseteq> p\<cdot>(e\<cdot>x)"
+      by (rule monofun_cfun_arg)
+    hence "(p oo d oo e)\<cdot>x \<sqsubseteq> x"
+      by simp
+  }
+  note p_d_e_below = this
+  show ?thesis
+  proof
+    fix x
+    show "(p oo d oo e)\<cdot>x \<sqsubseteq> x"
+      by (rule p_d_e_below)
+  next
+    fix x
+    show "(p oo d oo e)\<cdot>((p oo d oo e)\<cdot>x) = (p oo d oo e)\<cdot>x"
+    proof (rule below_antisym)
+      show "(p oo d oo e)\<cdot>((p oo d oo e)\<cdot>x) \<sqsubseteq> (p oo d oo e)\<cdot>x"
+        by (rule p_d_e_below)
+      have "p\<cdot>(d\<cdot>(d\<cdot>(d\<cdot>(e\<cdot>x)))) \<sqsubseteq> p\<cdot>(d\<cdot>(e\<cdot>(p\<cdot>(d\<cdot>(e\<cdot>x)))))"
+        by (intro monofun_cfun_arg d)
+      hence "p\<cdot>(d\<cdot>(e\<cdot>x)) \<sqsubseteq> p\<cdot>(d\<cdot>(e\<cdot>(p\<cdot>(d\<cdot>(e\<cdot>x)))))"
+        by (simp only: d.idem)
+      thus "(p oo d oo e)\<cdot>x \<sqsubseteq> (p oo d oo e)\<cdot>((p oo d oo e)\<cdot>x)"
+        by simp
+    qed
+  qed
+qed
+
+lemma finite_deflation_p_d_e:
+  assumes "finite_deflation d"
+  assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
+  shows "finite_deflation (p oo d oo e)"
+proof -
+  interpret d: finite_deflation d by fact
+  show ?thesis
+  proof (rule finite_deflation_intro)
+    have "deflation d" ..
+    thus "deflation (p oo d oo e)"
+      using d by (rule deflation_p_d_e)
+  next
+    have "finite ((\<lambda>x. d\<cdot>x) ` range (\<lambda>x. e\<cdot>x))"
+      by (rule d.finite_image)
+    hence "finite ((\<lambda>x. p\<cdot>x) ` (\<lambda>x. d\<cdot>x) ` range (\<lambda>x. e\<cdot>x))"
+      by (rule finite_imageI)
+    hence "finite (range (\<lambda>x. (p oo d oo e)\<cdot>x))"
+      by (simp add: image_image)
+    thus "finite {x. (p oo d oo e)\<cdot>x = x}"
+      by (rule finite_range_imp_finite_fixes)
+  qed
+qed
+
+end
+
+subsection {* Uniqueness of ep-pairs *}
+
+lemma ep_pair_unique_e_lemma:
+  assumes 1: "ep_pair e1 p" and 2: "ep_pair e2 p"
+  shows "e1 \<sqsubseteq> e2"
+proof (rule cfun_belowI)
+  fix x
+  have "e1\<cdot>(p\<cdot>(e2\<cdot>x)) \<sqsubseteq> e2\<cdot>x"
+    by (rule ep_pair.e_p_below [OF 1])
+  thus "e1\<cdot>x \<sqsubseteq> e2\<cdot>x"
+    by (simp only: ep_pair.e_inverse [OF 2])
+qed
+
+lemma ep_pair_unique_e:
+  "\<lbrakk>ep_pair e1 p; ep_pair e2 p\<rbrakk> \<Longrightarrow> e1 = e2"
+by (fast intro: below_antisym elim: ep_pair_unique_e_lemma)
+
+lemma ep_pair_unique_p_lemma:
+  assumes 1: "ep_pair e p1" and 2: "ep_pair e p2"
+  shows "p1 \<sqsubseteq> p2"
+proof (rule cfun_belowI)
+  fix x
+  have "e\<cdot>(p1\<cdot>x) \<sqsubseteq> x"
+    by (rule ep_pair.e_p_below [OF 1])
+  hence "p2\<cdot>(e\<cdot>(p1\<cdot>x)) \<sqsubseteq> p2\<cdot>x"
+    by (rule monofun_cfun_arg)
+  thus "p1\<cdot>x \<sqsubseteq> p2\<cdot>x"
+    by (simp only: ep_pair.e_inverse [OF 2])
+qed
+
+lemma ep_pair_unique_p:
+  "\<lbrakk>ep_pair e p1; ep_pair e p2\<rbrakk> \<Longrightarrow> p1 = p2"
+by (fast intro: below_antisym elim: ep_pair_unique_p_lemma)
+
+subsection {* Composing ep-pairs *}
+
+lemma ep_pair_ID_ID: "ep_pair ID ID"
+by default simp_all
+
+lemma ep_pair_comp:
+  assumes "ep_pair e1 p1" and "ep_pair e2 p2"
+  shows "ep_pair (e2 oo e1) (p1 oo p2)"
+proof
+  interpret ep1: ep_pair e1 p1 by fact
+  interpret ep2: ep_pair e2 p2 by fact
+  fix x y
+  show "(p1 oo p2)\<cdot>((e2 oo e1)\<cdot>x) = x"
+    by simp
+  have "e1\<cdot>(p1\<cdot>(p2\<cdot>y)) \<sqsubseteq> p2\<cdot>y"
+    by (rule ep1.e_p_below)
+  hence "e2\<cdot>(e1\<cdot>(p1\<cdot>(p2\<cdot>y))) \<sqsubseteq> e2\<cdot>(p2\<cdot>y)"
+    by (rule monofun_cfun_arg)
+  also have "e2\<cdot>(p2\<cdot>y) \<sqsubseteq> y"
+    by (rule ep2.e_p_below)
+  finally show "(e2 oo e1)\<cdot>((p1 oo p2)\<cdot>y) \<sqsubseteq> y"
+    by simp
+qed
+
+locale pcpo_ep_pair = ep_pair +
+  constrains e :: "'a::pcpo \<rightarrow> 'b::pcpo"
+  constrains p :: "'b::pcpo \<rightarrow> 'a::pcpo"
+begin
+
+lemma e_strict [simp]: "e\<cdot>\<bottom> = \<bottom>"
+proof -
+  have "\<bottom> \<sqsubseteq> p\<cdot>\<bottom>" by (rule minimal)
+  hence "e\<cdot>\<bottom> \<sqsubseteq> e\<cdot>(p\<cdot>\<bottom>)" by (rule monofun_cfun_arg)
+  also have "e\<cdot>(p\<cdot>\<bottom>) \<sqsubseteq> \<bottom>" by (rule e_p_below)
+  finally show "e\<cdot>\<bottom> = \<bottom>" by simp
+qed
+
+lemma e_bottom_iff [simp]: "e\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>"
+by (rule e_eq_iff [where y="\<bottom>", unfolded e_strict])
+
+lemma e_defined: "x \<noteq> \<bottom> \<Longrightarrow> e\<cdot>x \<noteq> \<bottom>"
+by simp
+
+lemma p_strict [simp]: "p\<cdot>\<bottom> = \<bottom>"
+by (rule e_inverse [where x="\<bottom>", unfolded e_strict])
+
+lemmas stricts = e_strict p_strict
+
+end
+
+end