src/HOL/HOLCF/Fix.thy
changeset 40774 0437dbc127b3
parent 40771 1c6f7d4b110e
child 41324 1383653efec3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Fix.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,229 @@
+(*  Title:      HOLCF/Fix.thy
+    Author:     Franz Regensburger
+    Author:     Brian Huffman
+*)
+
+header {* Fixed point operator and admissibility *}
+
+theory Fix
+imports Cfun
+begin
+
+default_sort pcpo
+
+subsection {* Iteration *}
+
+primrec iterate :: "nat \<Rightarrow> ('a::cpo \<rightarrow> 'a) \<rightarrow> ('a \<rightarrow> 'a)" where
+    "iterate 0 = (\<Lambda> F x. x)"
+  | "iterate (Suc n) = (\<Lambda> F x. F\<cdot>(iterate n\<cdot>F\<cdot>x))"
+
+text {* Derive inductive properties of iterate from primitive recursion *}
+
+lemma iterate_0 [simp]: "iterate 0\<cdot>F\<cdot>x = x"
+by simp
+
+lemma iterate_Suc [simp]: "iterate (Suc n)\<cdot>F\<cdot>x = F\<cdot>(iterate n\<cdot>F\<cdot>x)"
+by simp
+
+declare iterate.simps [simp del]
+
+lemma iterate_Suc2: "iterate (Suc n)\<cdot>F\<cdot>x = iterate n\<cdot>F\<cdot>(F\<cdot>x)"
+by (induct n) simp_all
+
+lemma iterate_iterate:
+  "iterate m\<cdot>F\<cdot>(iterate n\<cdot>F\<cdot>x) = iterate (m + n)\<cdot>F\<cdot>x"
+by (induct m) simp_all
+
+text {* The sequence of function iterations is a chain. *}
+
+lemma chain_iterate [simp]: "chain (\<lambda>i. iterate i\<cdot>F\<cdot>\<bottom>)"
+by (rule chainI, unfold iterate_Suc2, rule monofun_cfun_arg, rule minimal)
+
+
+subsection {* Least fixed point operator *}
+
+definition
+  "fix" :: "('a \<rightarrow> 'a) \<rightarrow> 'a" where
+  "fix = (\<Lambda> F. \<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
+
+text {* Binder syntax for @{term fix} *}
+
+abbreviation
+  fix_syn :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"  (binder "FIX " 10) where
+  "fix_syn (\<lambda>x. f x) \<equiv> fix\<cdot>(\<Lambda> x. f x)"
+
+notation (xsymbols)
+  fix_syn  (binder "\<mu> " 10)
+
+text {* Properties of @{term fix} *}
+
+text {* direct connection between @{term fix} and iteration *}
+
+lemma fix_def2: "fix\<cdot>F = (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
+unfolding fix_def by simp
+
+lemma iterate_below_fix: "iterate n\<cdot>f\<cdot>\<bottom> \<sqsubseteq> fix\<cdot>f"
+  unfolding fix_def2
+  using chain_iterate by (rule is_ub_thelub)
+
+text {*
+  Kleene's fixed point theorems for continuous functions in pointed
+  omega cpo's
+*}
+
+lemma fix_eq: "fix\<cdot>F = F\<cdot>(fix\<cdot>F)"
+apply (simp add: fix_def2)
+apply (subst lub_range_shift [of _ 1, symmetric])
+apply (rule chain_iterate)
+apply (subst contlub_cfun_arg)
+apply (rule chain_iterate)
+apply simp
+done
+
+lemma fix_least_below: "F\<cdot>x \<sqsubseteq> x \<Longrightarrow> fix\<cdot>F \<sqsubseteq> x"
+apply (simp add: fix_def2)
+apply (rule lub_below)
+apply (rule chain_iterate)
+apply (induct_tac i)
+apply simp
+apply simp
+apply (erule rev_below_trans)
+apply (erule monofun_cfun_arg)
+done
+
+lemma fix_least: "F\<cdot>x = x \<Longrightarrow> fix\<cdot>F \<sqsubseteq> x"
+by (rule fix_least_below, simp)
+
+lemma fix_eqI:
+  assumes fixed: "F\<cdot>x = x" and least: "\<And>z. F\<cdot>z = z \<Longrightarrow> x \<sqsubseteq> z"
+  shows "fix\<cdot>F = x"
+apply (rule below_antisym)
+apply (rule fix_least [OF fixed])
+apply (rule least [OF fix_eq [symmetric]])
+done
+
+lemma fix_eq2: "f \<equiv> fix\<cdot>F \<Longrightarrow> f = F\<cdot>f"
+by (simp add: fix_eq [symmetric])
+
+lemma fix_eq3: "f \<equiv> fix\<cdot>F \<Longrightarrow> f\<cdot>x = F\<cdot>f\<cdot>x"
+by (erule fix_eq2 [THEN cfun_fun_cong])
+
+lemma fix_eq4: "f = fix\<cdot>F \<Longrightarrow> f = F\<cdot>f"
+apply (erule ssubst)
+apply (rule fix_eq)
+done
+
+lemma fix_eq5: "f = fix\<cdot>F \<Longrightarrow> f\<cdot>x = F\<cdot>f\<cdot>x"
+by (erule fix_eq4 [THEN cfun_fun_cong])
+
+text {* strictness of @{term fix} *}
+
+lemma fix_bottom_iff: "(fix\<cdot>F = \<bottom>) = (F\<cdot>\<bottom> = \<bottom>)"
+apply (rule iffI)
+apply (erule subst)
+apply (rule fix_eq [symmetric])
+apply (erule fix_least [THEN UU_I])
+done
+
+lemma fix_strict: "F\<cdot>\<bottom> = \<bottom> \<Longrightarrow> fix\<cdot>F = \<bottom>"
+by (simp add: fix_bottom_iff)
+
+lemma fix_defined: "F\<cdot>\<bottom> \<noteq> \<bottom> \<Longrightarrow> fix\<cdot>F \<noteq> \<bottom>"
+by (simp add: fix_bottom_iff)
+
+text {* @{term fix} applied to identity and constant functions *}
+
+lemma fix_id: "(\<mu> x. x) = \<bottom>"
+by (simp add: fix_strict)
+
+lemma fix_const: "(\<mu> x. c) = c"
+by (subst fix_eq, simp)
+
+subsection {* Fixed point induction *}
+
+lemma fix_ind: "\<lbrakk>adm P; P \<bottom>; \<And>x. P x \<Longrightarrow> P (F\<cdot>x)\<rbrakk> \<Longrightarrow> P (fix\<cdot>F)"
+unfolding fix_def2
+apply (erule admD)
+apply (rule chain_iterate)
+apply (rule nat_induct, simp_all)
+done
+
+lemma def_fix_ind:
+  "\<lbrakk>f \<equiv> fix\<cdot>F; adm P; P \<bottom>; \<And>x. P x \<Longrightarrow> P (F\<cdot>x)\<rbrakk> \<Longrightarrow> P f"
+by (simp add: fix_ind)
+
+lemma fix_ind2:
+  assumes adm: "adm P"
+  assumes 0: "P \<bottom>" and 1: "P (F\<cdot>\<bottom>)"
+  assumes step: "\<And>x. \<lbrakk>P x; P (F\<cdot>x)\<rbrakk> \<Longrightarrow> P (F\<cdot>(F\<cdot>x))"
+  shows "P (fix\<cdot>F)"
+unfolding fix_def2
+apply (rule admD [OF adm chain_iterate])
+apply (rule nat_less_induct)
+apply (case_tac n)
+apply (simp add: 0)
+apply (case_tac nat)
+apply (simp add: 1)
+apply (frule_tac x=nat in spec)
+apply (simp add: step)
+done
+
+lemma parallel_fix_ind:
+  assumes adm: "adm (\<lambda>x. P (fst x) (snd x))"
+  assumes base: "P \<bottom> \<bottom>"
+  assumes step: "\<And>x y. P x y \<Longrightarrow> P (F\<cdot>x) (G\<cdot>y)"
+  shows "P (fix\<cdot>F) (fix\<cdot>G)"
+proof -
+  from adm have adm': "adm (split P)"
+    unfolding split_def .
+  have "\<And>i. P (iterate i\<cdot>F\<cdot>\<bottom>) (iterate i\<cdot>G\<cdot>\<bottom>)"
+    by (induct_tac i, simp add: base, simp add: step)
+  hence "\<And>i. split P (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>)"
+    by simp
+  hence "split P (\<Squnion>i. (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>))"
+    by - (rule admD [OF adm'], simp, assumption)
+  hence "split P (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>, \<Squnion>i. iterate i\<cdot>G\<cdot>\<bottom>)"
+    by (simp add: lub_Pair)
+  hence "P (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>) (\<Squnion>i. iterate i\<cdot>G\<cdot>\<bottom>)"
+    by simp
+  thus "P (fix\<cdot>F) (fix\<cdot>G)"
+    by (simp add: fix_def2)
+qed
+
+subsection {* Fixed-points on product types *}
+
+text {*
+  Bekic's Theorem: Simultaneous fixed points over pairs
+  can be written in terms of separate fixed points.
+*}
+
+lemma fix_cprod:
+  "fix\<cdot>(F::'a \<times> 'b \<rightarrow> 'a \<times> 'b) =
+   (\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))),
+    \<mu> y. snd (F\<cdot>(\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))), y)))"
+  (is "fix\<cdot>F = (?x, ?y)")
+proof (rule fix_eqI)
+  have 1: "fst (F\<cdot>(?x, ?y)) = ?x"
+    by (rule trans [symmetric, OF fix_eq], simp)
+  have 2: "snd (F\<cdot>(?x, ?y)) = ?y"
+    by (rule trans [symmetric, OF fix_eq], simp)
+  from 1 2 show "F\<cdot>(?x, ?y) = (?x, ?y)" by (simp add: Pair_fst_snd_eq)
+next
+  fix z assume F_z: "F\<cdot>z = z"
+  obtain x y where z: "z = (x,y)" by (rule prod.exhaust)
+  from F_z z have F_x: "fst (F\<cdot>(x, y)) = x" by simp
+  from F_z z have F_y: "snd (F\<cdot>(x, y)) = y" by simp
+  let ?y1 = "\<mu> y. snd (F\<cdot>(x, y))"
+  have "?y1 \<sqsubseteq> y" by (rule fix_least, simp add: F_y)
+  hence "fst (F\<cdot>(x, ?y1)) \<sqsubseteq> fst (F\<cdot>(x, y))"
+    by (simp add: fst_monofun monofun_cfun)
+  hence "fst (F\<cdot>(x, ?y1)) \<sqsubseteq> x" using F_x by simp
+  hence 1: "?x \<sqsubseteq> x" by (simp add: fix_least_below)
+  hence "snd (F\<cdot>(?x, y)) \<sqsubseteq> snd (F\<cdot>(x, y))"
+    by (simp add: snd_monofun monofun_cfun)
+  hence "snd (F\<cdot>(?x, y)) \<sqsubseteq> y" using F_y by simp
+  hence 2: "?y \<sqsubseteq> y" by (simp add: fix_least_below)
+  show "(?x, ?y) \<sqsubseteq> z" using z 1 2 by simp
+qed
+
+end