--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Tools/holcf_library.ML	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,289 @@
+(*  Title:      HOLCF/Tools/holcf_library.ML
+    Author:     Brian Huffman
+
+Functions for constructing HOLCF types and terms.
+*)
+
+structure HOLCF_Library =
+struct
+
+infixr 6 ->>;
+infixr -->>;
+infix 9 `;
+
+(*** Operations from Isabelle/HOL ***)
+
+val boolT = HOLogic.boolT;
+val natT = HOLogic.natT;
+
+val mk_equals = Logic.mk_equals;
+val mk_eq = HOLogic.mk_eq;
+val mk_trp = HOLogic.mk_Trueprop;
+val mk_fst = HOLogic.mk_fst;
+val mk_snd = HOLogic.mk_snd;
+val mk_not = HOLogic.mk_not;
+val mk_conj = HOLogic.mk_conj;
+val mk_disj = HOLogic.mk_disj;
+val mk_imp = HOLogic.mk_imp;
+
+fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t;
+fun mk_all (x, t) = HOLogic.all_const (fastype_of x) $ Term.lambda x t;
+
+
+(*** Basic HOLCF concepts ***)
+
+fun mk_bottom T = Const (@{const_name UU}, T);
+
+fun below_const T = Const (@{const_name below}, [T, T] ---> boolT);
+fun mk_below (t, u) = below_const (fastype_of t) $ t $ u;
+
+fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t));
+
+fun mk_defined t = mk_not (mk_undef t);
+
+fun mk_adm t =
+  Const (@{const_name adm}, fastype_of t --> boolT) $ t;
+
+fun mk_compact t =
+  Const (@{const_name compact}, fastype_of t --> boolT) $ t;
+
+fun mk_cont t =
+  Const (@{const_name cont}, fastype_of t --> boolT) $ t;
+
+fun mk_chain t =
+  Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t;
+
+fun mk_lub t =
+  let
+    val T = Term.range_type (Term.fastype_of t);
+    val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
+    val UNIV_const = @{term "UNIV :: nat set"};
+    val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
+    val image_const = Const (@{const_name image}, image_type);
+  in
+    lub_const $ (image_const $ t $ UNIV_const)
+  end;
+
+
+(*** Continuous function space ***)
+
+fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]);
+
+val (op ->>) = mk_cfunT;
+val (op -->>) = Library.foldr mk_cfunT;
+
+fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U)
+  | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
+
+fun capply_const (S, T) =
+  Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T));
+
+fun cabs_const (S, T) =
+  Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T));
+
+fun mk_cabs t =
+  let val T = fastype_of t
+  in cabs_const (Term.domain_type T, Term.range_type T) $ t end
+
+(* builds the expression (% v1 v2 .. vn. rhs) *)
+fun lambdas [] rhs = rhs
+  | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs);
+
+(* builds the expression (LAM v. rhs) *)
+fun big_lambda v rhs =
+  cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs;
+
+(* builds the expression (LAM v1 v2 .. vn. rhs) *)
+fun big_lambdas [] rhs = rhs
+  | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
+
+fun mk_capply (t, u) =
+  let val (S, T) =
+    case fastype_of t of
+        Type(@{type_name cfun}, [S, T]) => (S, T)
+      | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
+  in capply_const (S, T) $ t $ u end;
+
+val (op `) = mk_capply;
+
+val list_ccomb : term * term list -> term = Library.foldl mk_capply;
+
+fun mk_ID T = Const (@{const_name ID}, T ->> T);
+
+fun cfcomp_const (T, U, V) =
+  Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
+
+fun mk_cfcomp (f, g) =
+  let
+    val (U, V) = dest_cfunT (fastype_of f);
+    val (T, U') = dest_cfunT (fastype_of g);
+  in
+    if U = U'
+    then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
+    else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
+  end;
+
+fun strictify_const T = Const (@{const_name strictify}, T ->> T);
+fun mk_strictify t = strictify_const (fastype_of t) ` t;
+
+fun mk_strict t =
+  let val (T, U) = dest_cfunT (fastype_of t);
+  in mk_eq (t ` mk_bottom T, mk_bottom U) end;
+
+
+(*** Product type ***)
+
+val mk_prodT = HOLogic.mk_prodT
+
+fun mk_tupleT [] = HOLogic.unitT
+  | mk_tupleT [T] = T
+  | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts);
+
+(* builds the expression (v1,v2,..,vn) *)
+fun mk_tuple [] = HOLogic.unit
+  | mk_tuple (t::[]) = t
+  | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
+
+(* builds the expression (%(v1,v2,..,vn). rhs) *)
+fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
+  | lambda_tuple (v::[]) rhs = Term.lambda v rhs
+  | lambda_tuple (v::vs) rhs =
+      HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
+
+
+(*** Lifted cpo type ***)
+
+fun mk_upT T = Type(@{type_name "u"}, [T]);
+
+fun dest_upT (Type(@{type_name "u"}, [T])) = T
+  | dest_upT T = raise TYPE ("dest_upT", [T], []);
+
+fun up_const T = Const(@{const_name up}, T ->> mk_upT T);
+
+fun mk_up t = up_const (fastype_of t) ` t;
+
+fun fup_const (T, U) =
+  Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U);
+
+fun mk_fup t = fup_const (dest_cfunT (fastype_of t)) ` t;
+
+fun from_up T = fup_const (T, T) ` mk_ID T;
+
+
+(*** Lifted unit type ***)
+
+val oneT = @{typ "one"};
+
+fun one_case_const T = Const (@{const_name one_case}, T ->> oneT ->> T);
+fun mk_one_case t = one_case_const (fastype_of t) ` t;
+
+
+(*** Strict product type ***)
+
+fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]);
+
+fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U)
+  | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []);
+
+fun spair_const (T, U) =
+  Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U));
+
+(* builds the expression (:t, u:) *)
+fun mk_spair (t, u) =
+  spair_const (fastype_of t, fastype_of u) ` t ` u;
+
+(* builds the expression (:t1,t2,..,tn:) *)
+fun mk_stuple [] = @{term "ONE"}
+  | mk_stuple (t::[]) = t
+  | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts);
+
+fun sfst_const (T, U) =
+  Const(@{const_name sfst}, mk_sprodT (T, U) ->> T);
+
+fun ssnd_const (T, U) =
+  Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U);
+
+fun ssplit_const (T, U, V) =
+  Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V);
+
+fun mk_ssplit t =
+  let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t));
+  in ssplit_const (T, U, V) ` t end;
+
+
+(*** Strict sum type ***)
+
+fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]);
+
+fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U)
+  | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []);
+
+fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U));
+fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U));
+
+(* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
+fun mk_sinjects ts =
+  let
+    val Ts = map fastype_of ts;
+    fun combine (t, T) (us, U) =
+      let
+        val v = sinl_const (T, U) ` t;
+        val vs = map (fn u => sinr_const (T, U) ` u) us;
+      in
+        (v::vs, mk_ssumT (T, U))
+      end
+    fun inj [] = raise Fail "mk_sinjects: empty list"
+      | inj ((t, T)::[]) = ([t], T)
+      | inj ((t, T)::ts) = combine (t, T) (inj ts);
+  in
+    fst (inj (ts ~~ Ts))
+  end;
+
+fun sscase_const (T, U, V) =
+  Const(@{const_name sscase},
+    (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V);
+
+fun mk_sscase (t, u) =
+  let val (T, V) = dest_cfunT (fastype_of t);
+      val (U, V) = dest_cfunT (fastype_of u);
+  in sscase_const (T, U, V) ` t ` u end;
+
+fun from_sinl (T, U) =
+  sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T);
+
+fun from_sinr (T, U) =
+  sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U;
+
+
+(*** pattern match monad type ***)
+
+fun mk_matchT T = Type (@{type_name "match"}, [T]);
+
+fun dest_matchT (Type(@{type_name "match"}, [T])) = T
+  | dest_matchT T = raise TYPE ("dest_matchT", [T], []);
+
+fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T);
+
+fun succeed_const T = Const (@{const_name "Fixrec.succeed"}, T ->> mk_matchT T);
+fun mk_succeed t = succeed_const (fastype_of t) ` t;
+
+
+(*** lifted boolean type ***)
+
+val trT = @{typ "tr"};
+
+
+(*** theory of fixed points ***)
+
+fun mk_fix t =
+  let val (T, _) = dest_cfunT (fastype_of t)
+  in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
+
+fun iterate_const T =
+  Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T));
+
+fun mk_iterate (n, f) =
+  let val (T, _) = dest_cfunT (Term.fastype_of f);
+  in (iterate_const T $ n) ` f ` mk_bottom T end;
+
+end;