src/HOLCF/Tools/holcf_library.ML
changeset 40774 0437dbc127b3
parent 40773 6c12f5e24e34
child 40775 ed7a4eadb2f6
--- a/src/HOLCF/Tools/holcf_library.ML	Sat Nov 27 14:34:54 2010 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,289 +0,0 @@
-(*  Title:      HOLCF/Tools/holcf_library.ML
-    Author:     Brian Huffman
-
-Functions for constructing HOLCF types and terms.
-*)
-
-structure HOLCF_Library =
-struct
-
-infixr 6 ->>;
-infixr -->>;
-infix 9 `;
-
-(*** Operations from Isabelle/HOL ***)
-
-val boolT = HOLogic.boolT;
-val natT = HOLogic.natT;
-
-val mk_equals = Logic.mk_equals;
-val mk_eq = HOLogic.mk_eq;
-val mk_trp = HOLogic.mk_Trueprop;
-val mk_fst = HOLogic.mk_fst;
-val mk_snd = HOLogic.mk_snd;
-val mk_not = HOLogic.mk_not;
-val mk_conj = HOLogic.mk_conj;
-val mk_disj = HOLogic.mk_disj;
-val mk_imp = HOLogic.mk_imp;
-
-fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t;
-fun mk_all (x, t) = HOLogic.all_const (fastype_of x) $ Term.lambda x t;
-
-
-(*** Basic HOLCF concepts ***)
-
-fun mk_bottom T = Const (@{const_name UU}, T);
-
-fun below_const T = Const (@{const_name below}, [T, T] ---> boolT);
-fun mk_below (t, u) = below_const (fastype_of t) $ t $ u;
-
-fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t));
-
-fun mk_defined t = mk_not (mk_undef t);
-
-fun mk_adm t =
-  Const (@{const_name adm}, fastype_of t --> boolT) $ t;
-
-fun mk_compact t =
-  Const (@{const_name compact}, fastype_of t --> boolT) $ t;
-
-fun mk_cont t =
-  Const (@{const_name cont}, fastype_of t --> boolT) $ t;
-
-fun mk_chain t =
-  Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t;
-
-fun mk_lub t =
-  let
-    val T = Term.range_type (Term.fastype_of t);
-    val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
-    val UNIV_const = @{term "UNIV :: nat set"};
-    val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
-    val image_const = Const (@{const_name image}, image_type);
-  in
-    lub_const $ (image_const $ t $ UNIV_const)
-  end;
-
-
-(*** Continuous function space ***)
-
-fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]);
-
-val (op ->>) = mk_cfunT;
-val (op -->>) = Library.foldr mk_cfunT;
-
-fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U)
-  | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
-
-fun capply_const (S, T) =
-  Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T));
-
-fun cabs_const (S, T) =
-  Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T));
-
-fun mk_cabs t =
-  let val T = fastype_of t
-  in cabs_const (Term.domain_type T, Term.range_type T) $ t end
-
-(* builds the expression (% v1 v2 .. vn. rhs) *)
-fun lambdas [] rhs = rhs
-  | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs);
-
-(* builds the expression (LAM v. rhs) *)
-fun big_lambda v rhs =
-  cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs;
-
-(* builds the expression (LAM v1 v2 .. vn. rhs) *)
-fun big_lambdas [] rhs = rhs
-  | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
-
-fun mk_capply (t, u) =
-  let val (S, T) =
-    case fastype_of t of
-        Type(@{type_name cfun}, [S, T]) => (S, T)
-      | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
-  in capply_const (S, T) $ t $ u end;
-
-val (op `) = mk_capply;
-
-val list_ccomb : term * term list -> term = Library.foldl mk_capply;
-
-fun mk_ID T = Const (@{const_name ID}, T ->> T);
-
-fun cfcomp_const (T, U, V) =
-  Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
-
-fun mk_cfcomp (f, g) =
-  let
-    val (U, V) = dest_cfunT (fastype_of f);
-    val (T, U') = dest_cfunT (fastype_of g);
-  in
-    if U = U'
-    then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
-    else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
-  end;
-
-fun strictify_const T = Const (@{const_name strictify}, T ->> T);
-fun mk_strictify t = strictify_const (fastype_of t) ` t;
-
-fun mk_strict t =
-  let val (T, U) = dest_cfunT (fastype_of t);
-  in mk_eq (t ` mk_bottom T, mk_bottom U) end;
-
-
-(*** Product type ***)
-
-val mk_prodT = HOLogic.mk_prodT
-
-fun mk_tupleT [] = HOLogic.unitT
-  | mk_tupleT [T] = T
-  | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts);
-
-(* builds the expression (v1,v2,..,vn) *)
-fun mk_tuple [] = HOLogic.unit
-  | mk_tuple (t::[]) = t
-  | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
-
-(* builds the expression (%(v1,v2,..,vn). rhs) *)
-fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
-  | lambda_tuple (v::[]) rhs = Term.lambda v rhs
-  | lambda_tuple (v::vs) rhs =
-      HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
-
-
-(*** Lifted cpo type ***)
-
-fun mk_upT T = Type(@{type_name "u"}, [T]);
-
-fun dest_upT (Type(@{type_name "u"}, [T])) = T
-  | dest_upT T = raise TYPE ("dest_upT", [T], []);
-
-fun up_const T = Const(@{const_name up}, T ->> mk_upT T);
-
-fun mk_up t = up_const (fastype_of t) ` t;
-
-fun fup_const (T, U) =
-  Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U);
-
-fun mk_fup t = fup_const (dest_cfunT (fastype_of t)) ` t;
-
-fun from_up T = fup_const (T, T) ` mk_ID T;
-
-
-(*** Lifted unit type ***)
-
-val oneT = @{typ "one"};
-
-fun one_case_const T = Const (@{const_name one_case}, T ->> oneT ->> T);
-fun mk_one_case t = one_case_const (fastype_of t) ` t;
-
-
-(*** Strict product type ***)
-
-fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]);
-
-fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U)
-  | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []);
-
-fun spair_const (T, U) =
-  Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U));
-
-(* builds the expression (:t, u:) *)
-fun mk_spair (t, u) =
-  spair_const (fastype_of t, fastype_of u) ` t ` u;
-
-(* builds the expression (:t1,t2,..,tn:) *)
-fun mk_stuple [] = @{term "ONE"}
-  | mk_stuple (t::[]) = t
-  | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts);
-
-fun sfst_const (T, U) =
-  Const(@{const_name sfst}, mk_sprodT (T, U) ->> T);
-
-fun ssnd_const (T, U) =
-  Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U);
-
-fun ssplit_const (T, U, V) =
-  Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V);
-
-fun mk_ssplit t =
-  let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t));
-  in ssplit_const (T, U, V) ` t end;
-
-
-(*** Strict sum type ***)
-
-fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]);
-
-fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U)
-  | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []);
-
-fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U));
-fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U));
-
-(* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
-fun mk_sinjects ts =
-  let
-    val Ts = map fastype_of ts;
-    fun combine (t, T) (us, U) =
-      let
-        val v = sinl_const (T, U) ` t;
-        val vs = map (fn u => sinr_const (T, U) ` u) us;
-      in
-        (v::vs, mk_ssumT (T, U))
-      end
-    fun inj [] = raise Fail "mk_sinjects: empty list"
-      | inj ((t, T)::[]) = ([t], T)
-      | inj ((t, T)::ts) = combine (t, T) (inj ts);
-  in
-    fst (inj (ts ~~ Ts))
-  end;
-
-fun sscase_const (T, U, V) =
-  Const(@{const_name sscase},
-    (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V);
-
-fun mk_sscase (t, u) =
-  let val (T, V) = dest_cfunT (fastype_of t);
-      val (U, V) = dest_cfunT (fastype_of u);
-  in sscase_const (T, U, V) ` t ` u end;
-
-fun from_sinl (T, U) =
-  sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T);
-
-fun from_sinr (T, U) =
-  sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U;
-
-
-(*** pattern match monad type ***)
-
-fun mk_matchT T = Type (@{type_name "match"}, [T]);
-
-fun dest_matchT (Type(@{type_name "match"}, [T])) = T
-  | dest_matchT T = raise TYPE ("dest_matchT", [T], []);
-
-fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T);
-
-fun succeed_const T = Const (@{const_name "Fixrec.succeed"}, T ->> mk_matchT T);
-fun mk_succeed t = succeed_const (fastype_of t) ` t;
-
-
-(*** lifted boolean type ***)
-
-val trT = @{typ "tr"};
-
-
-(*** theory of fixed points ***)
-
-fun mk_fix t =
-  let val (T, _) = dest_cfunT (fastype_of t)
-  in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
-
-fun iterate_const T =
-  Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T));
-
-fun mk_iterate (n, f) =
-  let val (T, _) = dest_cfunT (Term.fastype_of f);
-  in (iterate_const T $ n) ` f ` mk_bottom T end;
-
-end;