src/HOL/Library/Predicate_Compile_Alternative_Defs.thy
changeset 35953 0460ff79bb52
child 36053 29e242e9e9a3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy	Wed Mar 24 17:40:43 2010 +0100
@@ -0,0 +1,147 @@
+theory Predicate_Compile_Alternative_Defs
+imports "../Predicate_Compile"
+begin
+
+section {* Common constants *}
+
+declare HOL.if_bool_eq_disj[code_pred_inline]
+
+setup {* Predicate_Compile_Data.ignore_consts [@{const_name Let}] *}
+
+section {* Pairs *}
+
+setup {* Predicate_Compile_Data.ignore_consts [@{const_name fst}, @{const_name snd}, @{const_name split}] *}
+
+section {* Bounded quantifiers *}
+
+declare Ball_def[code_pred_inline]
+declare Bex_def[code_pred_inline]
+
+section {* Set operations *}
+
+declare Collect_def[code_pred_inline]
+declare mem_def[code_pred_inline]
+
+declare eq_reflection[OF empty_def, code_pred_inline]
+declare insert_code[code_pred_def]
+
+declare subset_iff[code_pred_inline]
+
+declare Int_def[code_pred_inline]
+declare eq_reflection[OF Un_def, code_pred_inline]
+declare eq_reflection[OF UNION_def, code_pred_inline]
+
+lemma Diff[code_pred_inline]:
+  "(A - B) = (%x. A x \<and> \<not> B x)"
+by (auto simp add: mem_def)
+
+lemma set_equality[code_pred_inline]:
+  "(A = B) = ((\<forall>x. A x \<longrightarrow> B x) \<and> (\<forall>x. B x \<longrightarrow> A x))"
+by (fastsimp simp add: mem_def)
+
+section {* Setup for Numerals *}
+
+setup {* Predicate_Compile_Data.ignore_consts [@{const_name number_of}] *}
+setup {* Predicate_Compile_Data.keep_functions [@{const_name number_of}] *}
+
+setup {* Predicate_Compile_Data.ignore_consts [@{const_name div}, @{const_name mod}, @{const_name times}] *}
+
+subsection {* Inductive definitions for arithmetic on natural numbers *}
+
+inductive plusP
+where
+  "plusP x 0 x"
+|  "plusP x y z ==> plusP x (Suc y) (Suc z)"
+
+setup {* Predicate_Compile_Fun.add_function_predicate_translation
+  (@{term "op + :: nat => nat => nat"}, @{term "plusP"}) *}
+
+inductive less_nat
+where
+  "less_nat 0 (Suc y)"
+| "less_nat x y ==> less_nat (Suc x) (Suc y)"
+
+lemma [code_pred_inline]:
+  "x < y = less_nat x y"
+apply (rule iffI)
+apply (induct x arbitrary: y)
+apply (case_tac y) apply (auto intro: less_nat.intros)
+apply (case_tac y)
+apply (auto intro: less_nat.intros)
+apply (induct rule: less_nat.induct)
+apply auto
+done
+
+inductive less_eq_nat
+where
+  "less_eq_nat 0 y"
+| "less_eq_nat x y ==> less_eq_nat (Suc x) (Suc y)"
+
+lemma [code_pred_inline]:
+"x <= y = less_eq_nat x y"
+apply (rule iffI)
+apply (induct x arbitrary: y)
+apply (auto intro: less_eq_nat.intros)
+apply (case_tac y) apply (auto intro: less_eq_nat.intros)
+apply (induct rule: less_eq_nat.induct)
+apply auto done
+
+section {* Alternative list definitions *}
+
+text {* size simps are not yet added to the Spec_Rules interface. So they are just added manually here! *}
+ 
+lemma [code_pred_def]:
+  "length [] = 0"
+  "length (x # xs) = Suc (length xs)"
+by auto
+
+subsection {* Alternative rules for set *}
+
+lemma set_ConsI1 [code_pred_intro]:
+  "set (x # xs) x"
+unfolding mem_def[symmetric, of _ x]
+by auto
+
+lemma set_ConsI2 [code_pred_intro]:
+  "set xs x ==> set (x' # xs) x" 
+unfolding mem_def[symmetric, of _ x]
+by auto
+
+code_pred [skip_proof] set
+proof -
+  case set
+  from this show thesis
+    apply (case_tac xb)
+    apply auto
+    unfolding mem_def[symmetric, of _ xc]
+    apply auto
+    unfolding mem_def
+    apply fastsimp
+    done
+qed
+
+subsection {* Alternative rules for list_all2 *}
+
+lemma list_all2_NilI [code_pred_intro]: "list_all2 P [] []"
+by auto
+
+lemma list_all2_ConsI [code_pred_intro]: "list_all2 P xs ys ==> P x y ==> list_all2 P (x#xs) (y#ys)"
+by auto
+
+code_pred [skip_proof] list_all2
+proof -
+  case list_all2
+  from this show thesis
+    apply -
+    apply (case_tac xb)
+    apply (case_tac xc)
+    apply auto
+    apply (case_tac xc)
+    apply auto
+    apply fastsimp
+    done
+qed
+
+
+
+end
\ No newline at end of file