src/HOL/Decision_Procs/Approximation.thy
changeset 56381 0556204bc230
parent 56195 c7dfd924a165
child 56382 5a50109d51ab
--- a/src/HOL/Decision_Procs/Approximation.thy	Thu Apr 03 17:16:02 2014 +0200
+++ b/src/HOL/Decision_Procs/Approximation.thy	Thu Apr 03 17:56:08 2014 +0200
@@ -2674,24 +2674,24 @@
 proof (induct f arbitrary: x)
   case (Inverse a)
   thus ?case
-    by (auto intro!: DERIV_intros simp add: algebra_simps power2_eq_square)
+    by (auto intro!: derivative_eq_intros simp add: algebra_simps power2_eq_square)
 next
   case (Cos a)
   thus ?case
-    by (auto intro!: DERIV_intros
+    by (auto intro!: derivative_intros
            simp del: interpret_floatarith.simps(5)
            simp add: interpret_floatarith_sin interpret_floatarith.simps(5)[of a])
 next
   case (Power a n)
   thus ?case
-    by (cases n) (auto intro!: DERIV_intros simp del: power_Suc)
+    by (cases n) (auto intro!: derivative_intros simp del: power_Suc)
 next
   case (Ln a)
-  thus ?case by (auto intro!: DERIV_intros simp add: divide_inverse)
+  thus ?case by (auto intro!: derivative_intros simp add: divide_inverse)
 next
   case (Var i)
   thus ?case using `n < length vs` by auto
-qed (auto intro!: DERIV_intros)
+qed (auto intro!: derivative_eq_intros)
 
 declare approx.simps[simp del]