--- a/src/HOL/IMP/Abs_Int0.thy Thu Apr 19 11:14:57 2012 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,411 +0,0 @@
-(* Author: Tobias Nipkow *)
-
-theory Abs_Int0
-imports Abs_State
-begin
-
-subsection "Computable Abstract Interpretation"
-
-text{* Abstract interpretation over type @{text st} instead of
-functions. *}
-
-context Gamma
-begin
-
-fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where
-"aval' (N n) S = num' n" |
-"aval' (V x) S = lookup S x" |
-"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
-
-lemma aval'_sound: "s : \<gamma>\<^isub>f S \<Longrightarrow> aval a s : \<gamma>(aval' a S)"
-by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def lookup_def)
-
-end
-
-text{* The for-clause (here and elsewhere) only serves the purpose of fixing
-the name of the type parameter @{typ 'av} which would otherwise be renamed to
-@{typ 'a}. *}
-
-locale Abs_Int = Gamma where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set"
-begin
-
-fun step' :: "'av st option \<Rightarrow> 'av st option acom \<Rightarrow> 'av st option acom" where
-"step' S (SKIP {P}) = (SKIP {S})" |
-"step' S (x ::= e {P}) =
- x ::= e {case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))}" |
-"step' S (c1; c2) = step' S c1; step' (post c1) c2" |
-"step' S (IF b THEN c1 ELSE c2 {P}) =
- (let c1' = step' S c1; c2' = step' S c2
- in IF b THEN c1' ELSE c2' {post c1 \<squnion> post c2})" |
-"step' S ({Inv} WHILE b DO c {P}) =
- {S \<squnion> post c} WHILE b DO step' Inv c {Inv}"
-
-definition AI :: "com \<Rightarrow> 'av st option acom option" where
-"AI = lpfp\<^isub>c (step' \<top>)"
-
-
-lemma strip_step'[simp]: "strip(step' S c) = strip c"
-by(induct c arbitrary: S) (simp_all add: Let_def)
-
-
-text{* Soundness: *}
-
-lemma in_gamma_update:
- "\<lbrakk> s : \<gamma>\<^isub>f S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^isub>f(update S x a)"
-by(simp add: \<gamma>_st_def lookup_update)
-
-text{* The soundness proofs are textually identical to the ones for the step
-function operating on states as functions. *}
-
-lemma step_preserves_le:
- "\<lbrakk> S \<subseteq> \<gamma>\<^isub>o S'; c \<le> \<gamma>\<^isub>c c' \<rbrakk> \<Longrightarrow> step S c \<le> \<gamma>\<^isub>c (step' S' c')"
-proof(induction c arbitrary: c' S S')
- case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP)
-next
- case Assign thus ?case
- by (fastforce simp: Assign_le map_acom_Assign intro: aval'_sound in_gamma_update
- split: option.splits del:subsetD)
-next
- case Semi thus ?case apply (auto simp: Semi_le map_acom_Semi)
- by (metis le_post post_map_acom)
-next
- case (If b c1 c2 P)
- then obtain c1' c2' P' where
- "c' = IF b THEN c1' ELSE c2' {P'}"
- "P \<subseteq> \<gamma>\<^isub>o P'" "c1 \<le> \<gamma>\<^isub>c c1'" "c2 \<le> \<gamma>\<^isub>c c2'"
- by (fastforce simp: If_le map_acom_If)
- moreover have "post c1 \<subseteq> \<gamma>\<^isub>o(post c1' \<squnion> post c2')"
- by (metis (no_types) `c1 \<le> \<gamma>\<^isub>c c1'` join_ge1 le_post mono_gamma_o order_trans post_map_acom)
- moreover have "post c2 \<subseteq> \<gamma>\<^isub>o(post c1' \<squnion> post c2')"
- by (metis (no_types) `c2 \<le> \<gamma>\<^isub>c c2'` join_ge2 le_post mono_gamma_o order_trans post_map_acom)
- ultimately show ?case using `S \<subseteq> \<gamma>\<^isub>o S'` by (simp add: If.IH subset_iff)
-next
- case (While I b c1 P)
- then obtain c1' I' P' where
- "c' = {I'} WHILE b DO c1' {P'}"
- "I \<subseteq> \<gamma>\<^isub>o I'" "P \<subseteq> \<gamma>\<^isub>o P'" "c1 \<le> \<gamma>\<^isub>c c1'"
- by (fastforce simp: map_acom_While While_le)
- moreover have "S \<union> post c1 \<subseteq> \<gamma>\<^isub>o (S' \<squnion> post c1')"
- using `S \<subseteq> \<gamma>\<^isub>o S'` le_post[OF `c1 \<le> \<gamma>\<^isub>c c1'`, simplified]
- by (metis (no_types) join_ge1 join_ge2 le_sup_iff mono_gamma_o order_trans)
- ultimately show ?case by (simp add: While.IH subset_iff)
-qed
-
-lemma AI_sound: "AI c = Some c' \<Longrightarrow> CS c \<le> \<gamma>\<^isub>c c'"
-proof(simp add: CS_def AI_def)
- assume 1: "lpfp\<^isub>c (step' \<top>) c = Some c'"
- have 2: "step' \<top> c' \<sqsubseteq> c'" by(rule lpfpc_pfp[OF 1])
- have 3: "strip (\<gamma>\<^isub>c (step' \<top> c')) = c"
- by(simp add: strip_lpfpc[OF _ 1])
- have "lfp (step UNIV) c \<le> \<gamma>\<^isub>c (step' \<top> c')"
- proof(rule lfp_lowerbound[simplified,OF 3])
- show "step UNIV (\<gamma>\<^isub>c (step' \<top> c')) \<le> \<gamma>\<^isub>c (step' \<top> c')"
- proof(rule step_preserves_le[OF _ _])
- show "UNIV \<subseteq> \<gamma>\<^isub>o \<top>" by simp
- show "\<gamma>\<^isub>c (step' \<top> c') \<le> \<gamma>\<^isub>c c'" by(rule mono_gamma_c[OF 2])
- qed
- qed
- from this 2 show "lfp (step UNIV) c \<le> \<gamma>\<^isub>c c'"
- by (blast intro: mono_gamma_c order_trans)
-qed
-
-end
-
-
-subsubsection "Monotonicity"
-
-locale Abs_Int_mono = Abs_Int +
-assumes mono_plus': "a1 \<sqsubseteq> b1 \<Longrightarrow> a2 \<sqsubseteq> b2 \<Longrightarrow> plus' a1 a2 \<sqsubseteq> plus' b1 b2"
-begin
-
-lemma mono_aval': "S \<sqsubseteq> S' \<Longrightarrow> aval' e S \<sqsubseteq> aval' e S'"
-by(induction e) (auto simp: le_st_def lookup_def mono_plus')
-
-lemma mono_update: "a \<sqsubseteq> a' \<Longrightarrow> S \<sqsubseteq> S' \<Longrightarrow> update S x a \<sqsubseteq> update S' x a'"
-by(auto simp add: le_st_def lookup_def update_def)
-
-lemma mono_step': "S \<sqsubseteq> S' \<Longrightarrow> c \<sqsubseteq> c' \<Longrightarrow> step' S c \<sqsubseteq> step' S' c'"
-apply(induction c c' arbitrary: S S' rule: le_acom.induct)
-apply (auto simp: Let_def mono_update mono_aval' mono_post le_join_disj
- split: option.split)
-done
-
-end
-
-
-subsubsection "Ascending Chain Condition"
-
-hide_const (open) acc
-
-abbreviation "strict r == r \<inter> -(r^-1)"
-abbreviation "acc r == wf((strict r)^-1)"
-
-lemma strict_inv_image: "strict(inv_image r f) = inv_image (strict r) f"
-by(auto simp: inv_image_def)
-
-lemma acc_inv_image:
- "acc r \<Longrightarrow> acc (inv_image r f)"
-by (metis converse_inv_image strict_inv_image wf_inv_image)
-
-text{* ACC for option type: *}
-
-lemma acc_option: assumes "acc {(x,y::'a::preord). x \<sqsubseteq> y}"
-shows "acc {(x,y::'a::preord option). x \<sqsubseteq> y}"
-proof(auto simp: wf_eq_minimal)
- fix xo :: "'a option" and Qo assume "xo : Qo"
- let ?Q = "{x. Some x \<in> Qo}"
- show "\<exists>yo\<in>Qo. \<forall>zo. yo \<sqsubseteq> zo \<and> ~ zo \<sqsubseteq> yo \<longrightarrow> zo \<notin> Qo" (is "\<exists>zo\<in>Qo. ?P zo")
- proof cases
- assume "?Q = {}"
- hence "?P None" by auto
- moreover have "None \<in> Qo" using `?Q = {}` `xo : Qo`
- by auto (metis not_Some_eq)
- ultimately show ?thesis by blast
- next
- assume "?Q \<noteq> {}"
- with assms show ?thesis
- apply(auto simp: wf_eq_minimal)
- apply(erule_tac x="?Q" in allE)
- apply auto
- apply(rule_tac x = "Some z" in bexI)
- by auto
- qed
-qed
-
-text{* ACC for abstract states, via measure functions. *}
-
-(*FIXME mv*)
-lemma setsum_strict_mono1:
-fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_cancel_ab_semigroup_add}"
-assumes "finite A" and "ALL x:A. f x \<le> g x" and "EX a:A. f a < g a"
-shows "setsum f A < setsum g A"
-proof-
- from assms(3) obtain a where a: "a:A" "f a < g a" by blast
- have "setsum f A = setsum f ((A-{a}) \<union> {a})"
- by(simp add:insert_absorb[OF `a:A`])
- also have "\<dots> = setsum f (A-{a}) + setsum f {a}"
- using `finite A` by(subst setsum_Un_disjoint) auto
- also have "setsum f (A-{a}) \<le> setsum g (A-{a})"
- by(rule setsum_mono)(simp add: assms(2))
- also have "setsum f {a} < setsum g {a}" using a by simp
- also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})"
- using `finite A` by(subst setsum_Un_disjoint[symmetric]) auto
- also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF `a:A`])
- finally show ?thesis by (metis add_right_mono add_strict_left_mono)
-qed
-
-lemma measure_st: assumes "(strict{(x,y::'a::SL_top). x \<sqsubseteq> y})^-1 <= measure m"
-and "\<forall>x y::'a::SL_top. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y"
-shows "(strict{(S,S'::'a::SL_top st). S \<sqsubseteq> S'})^-1 \<subseteq>
- measure(%fd. \<Sum>x| x\<in>set(dom fd) \<and> ~ \<top> \<sqsubseteq> fun fd x. m(fun fd x)+1)"
-proof-
- { fix S S' :: "'a st" assume "S \<sqsubseteq> S'" "~ S' \<sqsubseteq> S"
- let ?X = "set(dom S)" let ?Y = "set(dom S')"
- let ?f = "fun S" let ?g = "fun S'"
- let ?X' = "{x:?X. ~ \<top> \<sqsubseteq> ?f x}" let ?Y' = "{y:?Y. ~ \<top> \<sqsubseteq> ?g y}"
- from `S \<sqsubseteq> S'` have "ALL y:?Y'\<inter>?X. ?f y \<sqsubseteq> ?g y"
- by(auto simp: le_st_def lookup_def)
- hence 1: "ALL y:?Y'\<inter>?X. m(?g y)+1 \<le> m(?f y)+1"
- using assms(1,2) by(fastforce)
- from `~ S' \<sqsubseteq> S` obtain u where u: "u : ?X" "~ lookup S' u \<sqsubseteq> ?f u"
- by(auto simp: le_st_def)
- hence "u : ?X'" by simp (metis preord_class.le_trans top)
- have "?Y'-?X = {}" using `S \<sqsubseteq> S'` by(fastforce simp: le_st_def lookup_def)
- have "?Y'\<inter>?X <= ?X'" apply auto
- apply (metis `S \<sqsubseteq> S'` le_st_def lookup_def preord_class.le_trans)
- done
- have "(\<Sum>y\<in>?Y'. m(?g y)+1) = (\<Sum>y\<in>(?Y'-?X) \<union> (?Y'\<inter>?X). m(?g y)+1)"
- by (metis Un_Diff_Int)
- also have "\<dots> = (\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1)"
- using `?Y'-?X = {}` by (metis Un_empty_left)
- also have "\<dots> < (\<Sum>x\<in>?X'. m(?f x)+1)"
- proof cases
- assume "u \<in> ?Y'"
- hence "m(?g u) < m(?f u)" using assms(1) `S \<sqsubseteq> S'` u
- by (fastforce simp: le_st_def lookup_def)
- have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) < (\<Sum>y\<in>?Y'\<inter>?X. m(?f y)+1)"
- using `u:?X` `u:?Y'` `m(?g u) < m(?f u)`
- by(fastforce intro!: setsum_strict_mono1[OF _ 1])
- also have "\<dots> \<le> (\<Sum>y\<in>?X'. m(?f y)+1)"
- by(simp add: setsum_mono3[OF _ `?Y'\<inter>?X <= ?X'`])
- finally show ?thesis .
- next
- assume "u \<notin> ?Y'"
- with `?Y'\<inter>?X <= ?X'` have "?Y'\<inter>?X - {u} <= ?X' - {u}" by blast
- have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) = (\<Sum>y\<in>?Y'\<inter>?X - {u}. m(?g y)+1)"
- proof-
- have "?Y'\<inter>?X = ?Y'\<inter>?X - {u}" using `u \<notin> ?Y'` by auto
- thus ?thesis by metis
- qed
- also have "\<dots> < (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) + (\<Sum>y\<in>{u}. m(?f y)+1)" by simp
- also have "(\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) \<le> (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?f y)+1)"
- using 1 by(blast intro: setsum_mono)
- also have "\<dots> \<le> (\<Sum>y\<in>?X'-{u}. m(?f y)+1)"
- by(simp add: setsum_mono3[OF _ `?Y'\<inter>?X-{u} <= ?X'-{u}`])
- also have "\<dots> + (\<Sum>y\<in>{u}. m(?f y)+1)= (\<Sum>y\<in>(?X'-{u}) \<union> {u}. m(?f y)+1)"
- using `u:?X'` by(subst setsum_Un_disjoint[symmetric]) auto
- also have "\<dots> = (\<Sum>x\<in>?X'. m(?f x)+1)"
- using `u : ?X'` by(simp add:insert_absorb)
- finally show ?thesis by (blast intro: add_right_mono)
- qed
- finally have "(\<Sum>y\<in>?Y'. m(?g y)+1) < (\<Sum>x\<in>?X'. m(?f x)+1)" .
- } thus ?thesis by(auto simp add: measure_def inv_image_def)
-qed
-
-text{* ACC for acom. First the ordering on acom is related to an ordering on
-lists of annotations. *}
-
-(* FIXME mv and add [simp] *)
-lemma listrel_Cons_iff:
- "(x#xs, y#ys) : listrel r \<longleftrightarrow> (x,y) \<in> r \<and> (xs,ys) \<in> listrel r"
-by (blast intro:listrel.Cons)
-
-lemma listrel_app: "(xs1,ys1) : listrel r \<Longrightarrow> (xs2,ys2) : listrel r
- \<Longrightarrow> (xs1@xs2, ys1@ys2) : listrel r"
-by(auto simp add: listrel_iff_zip)
-
-lemma listrel_app_same_size: "size xs1 = size ys1 \<Longrightarrow> size xs2 = size ys2 \<Longrightarrow>
- (xs1@xs2, ys1@ys2) : listrel r \<longleftrightarrow>
- (xs1,ys1) : listrel r \<and> (xs2,ys2) : listrel r"
-by(auto simp add: listrel_iff_zip)
-
-lemma listrel_converse: "listrel(r^-1) = (listrel r)^-1"
-proof-
- { fix xs ys
- have "(xs,ys) : listrel(r^-1) \<longleftrightarrow> (ys,xs) : listrel r"
- apply(induct xs arbitrary: ys)
- apply (fastforce simp: listrel.Nil)
- apply (fastforce simp: listrel_Cons_iff)
- done
- } thus ?thesis by auto
-qed
-
-(* It would be nice to get rid of refl & trans and build them into the proof *)
-lemma acc_listrel: fixes r :: "('a*'a)set" assumes "refl r" and "trans r"
-and "acc r" shows "acc (listrel r - {([],[])})"
-proof-
- have refl: "!!x. (x,x) : r" using `refl r` unfolding refl_on_def by blast
- have trans: "!!x y z. (x,y) : r \<Longrightarrow> (y,z) : r \<Longrightarrow> (x,z) : r"
- using `trans r` unfolding trans_def by blast
- from assms(3) obtain mx :: "'a set \<Rightarrow> 'a" where
- mx: "!!S x. x:S \<Longrightarrow> mx S : S \<and> (\<forall>y. (mx S,y) : strict r \<longrightarrow> y \<notin> S)"
- by(simp add: wf_eq_minimal) metis
- let ?R = "listrel r - {([], [])}"
- { fix Q and xs :: "'a list"
- have "xs \<in> Q \<Longrightarrow> \<exists>ys. ys\<in>Q \<and> (\<forall>zs. (ys, zs) \<in> strict ?R \<longrightarrow> zs \<notin> Q)"
- (is "_ \<Longrightarrow> \<exists>ys. ?P Q ys")
- proof(induction xs arbitrary: Q rule: length_induct)
- case (1 xs)
- { have "!!ys Q. size ys < size xs \<Longrightarrow> ys : Q \<Longrightarrow> EX ms. ?P Q ms"
- using "1.IH" by blast
- } note IH = this
- show ?case
- proof(cases xs)
- case Nil with `xs : Q` have "?P Q []" by auto
- thus ?thesis by blast
- next
- case (Cons x ys)
- let ?Q1 = "{a. \<exists>bs. size bs = size ys \<and> a#bs : Q}"
- have "x : ?Q1" using `xs : Q` Cons by auto
- from mx[OF this] obtain m1 where
- 1: "m1 \<in> ?Q1 \<and> (\<forall>y. (m1,y) \<in> strict r \<longrightarrow> y \<notin> ?Q1)" by blast
- then obtain ms1 where "size ms1 = size ys" "m1#ms1 : Q" by blast+
- hence "size ms1 < size xs" using Cons by auto
- let ?Q2 = "{bs. \<exists>m1'. (m1',m1):r \<and> (m1,m1'):r \<and> m1'#bs : Q \<and> size bs = size ms1}"
- have "ms1 : ?Q2" using `m1#ms1 : Q` by(blast intro: refl)
- from IH[OF `size ms1 < size xs` this]
- obtain ms where 2: "?P ?Q2 ms" by auto
- then obtain m1' where m1': "(m1',m1) : r \<and> (m1,m1') : r \<and> m1'#ms : Q"
- by blast
- hence "\<forall>ab. (m1'#ms,ab) : strict ?R \<longrightarrow> ab \<notin> Q" using 1 2
- apply (auto simp: listrel_Cons_iff)
- apply (metis `length ms1 = length ys` listrel_eq_len trans)
- by (metis `length ms1 = length ys` listrel_eq_len trans)
- with m1' show ?thesis by blast
- qed
- qed
- }
- thus ?thesis unfolding wf_eq_minimal by (metis converse_iff)
-qed
-
-
-fun annos :: "'a acom \<Rightarrow> 'a list" where
-"annos (SKIP {a}) = [a]" |
-"annos (x::=e {a}) = [a]" |
-"annos (c1;c2) = annos c1 @ annos c2" |
-"annos (IF b THEN c1 ELSE c2 {a}) = a # annos c1 @ annos c2" |
-"annos ({i} WHILE b DO c {a}) = i # a # annos c"
-
-lemma size_annos_same: "strip c1 = strip c2 \<Longrightarrow> size(annos c1) = size(annos c2)"
-apply(induct c2 arbitrary: c1)
-apply (auto simp: strip_eq_SKIP strip_eq_Assign strip_eq_Semi strip_eq_If strip_eq_While)
-done
-
-lemmas size_annos_same2 = eqTrueI[OF size_annos_same]
-
-lemma set_annos_anno: "set (annos (anno a c)) = {a}"
-by(induction c)(auto)
-
-lemma le_iff_le_annos: "c1 \<sqsubseteq> c2 \<longleftrightarrow>
- (annos c1, annos c2) : listrel{(x,y). x \<sqsubseteq> y} \<and> strip c1 = strip c2"
-apply(induct c1 c2 rule: le_acom.induct)
-apply (auto simp: listrel.Nil listrel_Cons_iff listrel_app size_annos_same2)
-apply (metis listrel_app_same_size size_annos_same)+
-done
-
-lemma le_acom_subset_same_annos:
- "(strict{(c,c'::'a::preord acom). c \<sqsubseteq> c'})^-1 \<subseteq>
- (strict(inv_image (listrel{(a,a'::'a). a \<sqsubseteq> a'} - {([],[])}) annos))^-1"
-by(auto simp: le_iff_le_annos)
-
-lemma acc_acom: "acc {(a,a'::'a::preord). a \<sqsubseteq> a'} \<Longrightarrow>
- acc {(c,c'::'a acom). c \<sqsubseteq> c'}"
-apply(rule wf_subset[OF _ le_acom_subset_same_annos])
-apply(rule acc_inv_image[OF acc_listrel])
-apply(auto simp: refl_on_def trans_def intro: le_trans)
-done
-
-text{* Termination of the fixed-point finders, assuming monotone functions: *}
-
-lemma pfp_termination:
-fixes x0 :: "'a::preord"
-assumes mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" and "acc {(x::'a,y). x \<sqsubseteq> y}"
-and "x0 \<sqsubseteq> f x0" shows "EX x. pfp f x0 = Some x"
-proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. x \<sqsubseteq> f x"])
- show "wf {(x, s). (s \<sqsubseteq> f s \<and> \<not> f s \<sqsubseteq> s) \<and> x = f s}"
- by(rule wf_subset[OF assms(2)]) auto
-next
- show "x0 \<sqsubseteq> f x0" by(rule assms)
-next
- fix x assume "x \<sqsubseteq> f x" thus "f x \<sqsubseteq> f(f x)" by(rule mono)
-qed
-
-lemma lpfpc_termination:
- fixes f :: "(('a::SL_top)option acom \<Rightarrow> 'a option acom)"
- assumes "acc {(x::'a,y). x \<sqsubseteq> y}" and "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
- and "\<And>c. strip(f c) = strip c"
- shows "\<exists>c'. lpfp\<^isub>c f c = Some c'"
-unfolding lpfp\<^isub>c_def
-apply(rule pfp_termination)
- apply(erule assms(2))
- apply(rule acc_acom[OF acc_option[OF assms(1)]])
-apply(simp add: bot_acom assms(3))
-done
-
-context Abs_Int_mono
-begin
-
-lemma AI_Some_measure:
-assumes "(strict{(x,y::'a). x \<sqsubseteq> y})^-1 <= measure m"
-and "\<forall>x y::'a. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y"
-shows "\<exists>c'. AI c = Some c'"
-unfolding AI_def
-apply(rule lpfpc_termination)
-apply(rule wf_subset[OF wf_measure measure_st[OF assms]])
-apply(erule mono_step'[OF le_refl])
-apply(rule strip_step')
-done
-
-end
-
-end