src/HOL/Analysis/Ball_Volume.thy
changeset 71633 07bec530f02e
parent 70817 dd675800469d
child 74439 c278b1864592
--- a/src/HOL/Analysis/Ball_Volume.thy	Mon Mar 30 10:35:10 2020 +0200
+++ b/src/HOL/Analysis/Ball_Volume.thy	Tue Mar 31 15:51:15 2020 +0200
@@ -46,7 +46,7 @@
        (auto intro!: derivative_eq_intros continuous_intros simp: set_borel_measurable_def)
   also have "\<dots> = (\<integral>\<^sup>+ x. 2 * ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \<partial>lborel)"
     by (intro nn_integral_cong_AE AE_I[of _ _ "{0}"]) 
-       (auto simp: indicator_def powr_minus powr_half_sqrt field_split_simps ennreal_mult' mult_ac)
+       (auto simp: indicator_def powr_minus powr_half_sqrt field_split_simps ennreal_mult')
   also have "\<dots> = (\<integral>\<^sup>+ x. ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \<partial>lborel) +
                     (\<integral>\<^sup>+ x. ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \<partial>lborel)"
     (is "_ = ?I + _") by (simp add: mult_2 nn_integral_add)
@@ -137,7 +137,7 @@
       proof (cases "y \<in> {-r<..<r}")
         case True
         hence "y\<^sup>2 < r\<^sup>2" by (subst real_sqrt_less_iff [symmetric]) auto
-        thus ?thesis by (subst insert.IH) (auto simp: real_sqrt_less_iff)
+        thus ?thesis by (subst insert.IH) (auto)
       qed (insert elim, auto)
     qed
   qed