src/HOL/Analysis/Extended_Real_Limits.thy
changeset 71633 07bec530f02e
parent 71172 575b3a818de5
child 73932 fd21b4a93043
--- a/src/HOL/Analysis/Extended_Real_Limits.thy	Mon Mar 30 10:35:10 2020 +0200
+++ b/src/HOL/Analysis/Extended_Real_Limits.thy	Tue Mar 31 15:51:15 2020 +0200
@@ -304,7 +304,7 @@
   fix P d
   assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
   then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
-    by (auto simp: zero_less_dist_iff dist_commute)
+    by (auto simp: dist_commute)
   then show "\<exists>r>0. Inf (f ` (Collect P)) \<le> Inf (f ` (S \<inter> ball x r - {x}))"
     by (intro exI[of _ d] INF_mono conjI \<open>0 < d\<close>) auto
 next
@@ -324,7 +324,7 @@
   fix P d
   assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
   then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
-    by (auto simp: zero_less_dist_iff dist_commute)
+    by (auto simp: dist_commute)
   then show "\<exists>r>0. Sup (f ` (S \<inter> ball x r - {x})) \<le> Sup (f ` (Collect P))"
     by (intro exI[of _ d] SUP_mono conjI \<open>0 < d\<close>) auto
 next