--- a/src/HOL/IMP/Expr.thy Sun Dec 09 14:35:11 2001 +0100
+++ b/src/HOL/IMP/Expr.thy Sun Dec 09 14:35:36 2001 +0100
@@ -2,20 +2,24 @@
ID: $Id$
Author: Heiko Loetzbeyer & Robert Sandner & Tobias Nipkow, TUM
Copyright 1994 TUM
-
-Arithmetic expressions and Boolean expressions.
-Not used in the rest of the language, but included for completeness.
*)
-Expr = Datatype +
+header "Expressions"
+
+theory Expr = Datatype:
-(** Arithmetic expressions **)
-types loc
- state = "loc => nat"
- n2n = "nat => nat"
- n2n2n = "nat => nat => nat"
+text {*
+ Arithmetic expressions and Boolean expressions.
+ Not used in the rest of the language, but included for completeness.
+*}
-arities loc :: type
+subsection "Arithmetic expressions"
+typedecl loc
+
+types
+ state = "loc => nat"
+ n2n = "nat => nat"
+ n2n2n = "nat => nat => nat"
datatype
aexp = N nat
@@ -23,22 +27,24 @@
| Op1 n2n aexp
| Op2 n2n2n aexp aexp
-(** Evaluation of arithmetic expressions **)
+subsection "Evaluation of arithmetic expressions"
consts evala :: "((aexp*state) * nat) set"
"-a->" :: "[aexp*state,nat] => bool" (infixl 50)
translations
"aesig -a-> n" == "(aesig,n) : evala"
inductive evala
- intrs
- N "(N(n),s) -a-> n"
- X "(X(x),s) -a-> s(x)"
- Op1 "(e,s) -a-> n ==> (Op1 f e,s) -a-> f(n)"
- Op2 "[| (e0,s) -a-> n0; (e1,s) -a-> n1 |]
- ==> (Op2 f e0 e1,s) -a-> f n0 n1"
+ intros
+ N: "(N(n),s) -a-> n"
+ X: "(X(x),s) -a-> s(x)"
+ Op1: "(e,s) -a-> n ==> (Op1 f e,s) -a-> f(n)"
+ Op2: "[| (e0,s) -a-> n0; (e1,s) -a-> n1 |]
+ ==> (Op2 f e0 e1,s) -a-> f n0 n1"
+
+lemmas [intro] = N X Op1 Op2
types n2n2b = "[nat,nat] => bool"
-(** Boolean expressions **)
+subsection "Boolean expressions"
datatype
bexp = true
@@ -48,7 +54,7 @@
| andi bexp bexp (infixl 60)
| ori bexp bexp (infixl 60)
-(** Evaluation of boolean expressions **)
+subsection "Evaluation of boolean expressions"
consts evalb :: "((bexp*state) * bool)set"
"-b->" :: "[bexp*state,bool] => bool" (infixl 50)
@@ -56,21 +62,24 @@
"besig -b-> b" == "(besig,b) : evalb"
inductive evalb
- intrs (*avoid clash with ML constructors true, false*)
- tru "(true,s) -b-> True"
- fls "(false,s) -b-> False"
- ROp "[| (a0,s) -a-> n0; (a1,s) -a-> n1 |]
- ==> (ROp f a0 a1,s) -b-> f n0 n1"
- noti "(b,s) -b-> w ==> (noti(b),s) -b-> (~w)"
- andi "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |]
+ -- "avoid clash with ML constructors true, false"
+ intros
+ tru: "(true,s) -b-> True"
+ fls: "(false,s) -b-> False"
+ ROp: "[| (a0,s) -a-> n0; (a1,s) -a-> n1 |]
+ ==> (ROp f a0 a1,s) -b-> f n0 n1"
+ noti: "(b,s) -b-> w ==> (noti(b),s) -b-> (~w)"
+ andi: "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |]
==> (b0 andi b1,s) -b-> (w0 & w1)"
- ori "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |]
- ==> (b0 ori b1,s) -b-> (w0 | w1)"
+ ori: "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |]
+ ==> (b0 ori b1,s) -b-> (w0 | w1)"
+
+lemmas [intro] = tru fls ROp noti andi ori
-(** Denotational semantics of arithemtic and boolean expressions **)
+subsection "Denotational semantics of arithmetic and boolean expressions"
consts
- A :: aexp => state => nat
- B :: bexp => state => bool
+ A :: "aexp => state => nat"
+ B :: "bexp => state => bool"
primrec
"A(N(n)) = (%s. n)"
@@ -86,5 +95,59 @@
"B(b0 andi b1) = (%s. (B b0 s) & (B b1 s))"
"B(b0 ori b1) = (%s. (B b0 s) | (B b1 s))"
+lemma [simp]: "(N(n),s) -a-> n' = (n = n')"
+ by (rule,cases set: evala) auto
+
+lemma [simp]: "(X(x),sigma) -a-> i = (i = sigma x)"
+ by (rule,cases set: evala) auto
+
+lemma [simp]:
+ "(Op1 f e,sigma) -a-> i = (\<exists>n. i = f n \<and> (e,sigma) -a-> n)"
+ by (rule,cases set: evala) auto
+
+lemma [simp]:
+ "(Op2 f a1 a2,sigma) -a-> i =
+ (\<exists>n0 n1. i = f n0 n1 \<and> (a1, sigma) -a-> n0 \<and> (a2, sigma) -a-> n1)"
+ by (rule,cases set: evala) auto
+
+lemma [simp]: "((true,sigma) -b-> w) = (w=True)"
+ by (rule,cases set: evalb) auto
+
+lemma [simp]:
+ "((false,sigma) -b-> w) = (w=False)"
+ by (rule,cases set: evalb) auto
+
+lemma [simp]:
+ "((ROp f a0 a1,sigma) -b-> w) =
+ (? m. (a0,sigma) -a-> m & (? n. (a1,sigma) -a-> n & w = f m n))"
+ by (rule,cases set: evalb) auto
+
+lemma [simp]:
+ "((noti(b),sigma) -b-> w) = (? x. (b,sigma) -b-> x & w = (~x))"
+ by (rule,cases set: evalb) auto
+
+lemma [simp]:
+ "((b0 andi b1,sigma) -b-> w) =
+ (? x. (b0,sigma) -b-> x & (? y. (b1,sigma) -b-> y & w = (x&y)))"
+ by (rule,cases set: evalb) auto
+
+lemma [simp]:
+ "((b0 ori b1,sigma) -b-> w) =
+ (? x. (b0,sigma) -b-> x & (? y. (b1,sigma) -b-> y & w = (x|y)))"
+ by (rule,cases set: evalb) auto
+
+
+lemma aexp_iff [rule_format (no_asm)]:
+ "!n. ((a,s) -a-> n) = (A a s = n)"
+ apply (induct_tac "a")
+ apply auto
+ done
+
+lemma bexp_iff [rule_format (no_asm)]:
+ "!w. ((b,s) -b-> w) = (B b s = w)"
+ apply (induct_tac "b")
+ apply (auto simp add: aexp_iff)
+ done
+
end