src/HOL/Tools/Nitpick/nitpick_peephole.ML
changeset 33192 08a39a957ed7
child 33232 f93390060bbe
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Nitpick/nitpick_peephole.ML	Thu Oct 22 14:51:47 2009 +0200
@@ -0,0 +1,643 @@
+(*  Title:      HOL/Nitpick/Tools/nitpick_peephole.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2008, 2009
+
+Peephole optimizer for Nitpick.
+*)
+
+signature NITPICK_PEEPHOLE =
+sig
+  type formula = Kodkod.formula
+  type int_expr = Kodkod.int_expr
+  type rel_expr = Kodkod.rel_expr
+  type decl = Kodkod.decl
+  type expr_assign = Kodkod.expr_assign
+
+  type name_pool = {
+    rels: Kodkod.n_ary_index list,
+    vars: Kodkod.n_ary_index list,
+    formula_reg: int,
+    rel_reg: int}
+
+  val initial_pool : name_pool
+  val not3_rel : rel_expr
+  val suc_rel : rel_expr
+  val nat_add_rel : rel_expr
+  val int_add_rel : rel_expr
+  val nat_subtract_rel : rel_expr
+  val int_subtract_rel : rel_expr
+  val nat_multiply_rel : rel_expr
+  val int_multiply_rel : rel_expr
+  val nat_divide_rel : rel_expr
+  val int_divide_rel : rel_expr
+  val nat_modulo_rel : rel_expr
+  val int_modulo_rel : rel_expr
+  val nat_less_rel : rel_expr
+  val int_less_rel : rel_expr
+  val gcd_rel : rel_expr
+  val lcm_rel : rel_expr
+  val norm_frac_rel : rel_expr
+  val atom_for_bool : int -> bool -> rel_expr
+  val formula_for_bool : bool -> formula
+  val atom_for_nat : int * int -> int -> int
+  val min_int_for_card : int -> int
+  val max_int_for_card : int -> int
+  val int_for_atom : int * int -> int -> int
+  val atom_for_int : int * int -> int -> int
+  val inline_rel_expr : rel_expr -> bool
+  val empty_n_ary_rel : int -> rel_expr
+  val num_seq : int -> int -> int_expr list
+  val s_and : formula -> formula -> formula
+
+  type kodkod_constrs = {
+    kk_all: decl list -> formula -> formula,
+    kk_exist: decl list -> formula -> formula,
+    kk_formula_let: expr_assign list -> formula -> formula,
+    kk_formula_if: formula -> formula -> formula -> formula,
+    kk_or: formula -> formula -> formula,
+    kk_not: formula -> formula,
+    kk_iff: formula -> formula -> formula,
+    kk_implies: formula -> formula -> formula,
+    kk_and: formula -> formula -> formula,
+    kk_subset: rel_expr -> rel_expr -> formula,
+    kk_rel_eq: rel_expr -> rel_expr -> formula,
+    kk_no: rel_expr -> formula,
+    kk_lone: rel_expr -> formula,
+    kk_one: rel_expr -> formula,
+    kk_some: rel_expr -> formula,
+    kk_rel_let: expr_assign list -> rel_expr -> rel_expr,
+    kk_rel_if: formula -> rel_expr -> rel_expr -> rel_expr,
+    kk_union: rel_expr -> rel_expr -> rel_expr,
+    kk_difference: rel_expr -> rel_expr -> rel_expr,
+    kk_override: rel_expr -> rel_expr -> rel_expr,
+    kk_intersect: rel_expr -> rel_expr -> rel_expr,
+    kk_product: rel_expr -> rel_expr -> rel_expr,
+    kk_join: rel_expr -> rel_expr -> rel_expr,
+    kk_closure: rel_expr -> rel_expr,
+    kk_reflexive_closure: rel_expr -> rel_expr,
+    kk_comprehension: decl list -> formula -> rel_expr,
+    kk_project: rel_expr -> int_expr list -> rel_expr,
+    kk_project_seq: rel_expr -> int -> int -> rel_expr,
+    kk_not3: rel_expr -> rel_expr,
+    kk_nat_less: rel_expr -> rel_expr -> rel_expr,
+    kk_int_less: rel_expr -> rel_expr -> rel_expr
+  }
+
+  val kodkod_constrs : bool -> int -> int -> int -> kodkod_constrs
+end;
+
+structure NitpickPeephole : NITPICK_PEEPHOLE =
+struct
+
+open Kodkod
+open NitpickUtil
+
+type name_pool = {
+  rels: n_ary_index list,
+  vars: n_ary_index list,
+  formula_reg: int,
+  rel_reg: int}
+
+(* If you add new built-in relations, make sure to increment the counters here
+   as well to avoid name clashes (which fortunately would be detected by
+   Kodkodi). *)
+val initial_pool =
+  {rels = [(2, 10), (3, 20), (4, 10)], vars = [], formula_reg = 10,
+   rel_reg = 10}
+
+val not3_rel = Rel (2, 0)
+val suc_rel = Rel (2, 1)
+val nat_add_rel = Rel (3, 0)
+val int_add_rel = Rel (3, 1)
+val nat_subtract_rel = Rel (3, 2)
+val int_subtract_rel = Rel (3, 3)
+val nat_multiply_rel = Rel (3, 4)
+val int_multiply_rel = Rel (3, 5)
+val nat_divide_rel = Rel (3, 6)
+val int_divide_rel = Rel (3, 7)
+val nat_modulo_rel = Rel (3, 8)
+val int_modulo_rel = Rel (3, 9)
+val nat_less_rel = Rel (3, 10)
+val int_less_rel = Rel (3, 11)
+val gcd_rel = Rel (3, 12)
+val lcm_rel = Rel (3, 13)
+val norm_frac_rel = Rel (4, 0)
+
+(* int -> bool -> rel_expr *)
+fun atom_for_bool j0 = Atom o Integer.add j0 o int_for_bool
+(* bool -> formula *)
+fun formula_for_bool b = if b then True else False
+
+(* int * int -> int -> int *)
+fun atom_for_nat (k, j0) n = if n < 0 orelse n >= k then ~1 else n + j0
+(* int -> int *)
+fun min_int_for_card k = ~k div 2 + 1
+fun max_int_for_card k = k div 2
+(* int * int -> int -> int *)
+fun int_for_atom (k, j0) j =
+  let val j = j - j0 in if j <= max_int_for_card k then j else j - k end
+fun atom_for_int (k, j0) n =
+  if n < min_int_for_card k orelse n > max_int_for_card k then ~1
+  else if n < 0 then n + k + j0
+  else n + j0
+
+(* rel_expr -> bool *)
+fun is_none_product (Product (r1, r2)) =
+    is_none_product r1 orelse is_none_product r2
+  | is_none_product None = true
+  | is_none_product _ = false
+
+(* rel_expr -> bool *)
+fun is_one_rel_expr (Atom _) = true
+  | is_one_rel_expr (AtomSeq (1, _)) = true
+  | is_one_rel_expr (Var _) = true
+  | is_one_rel_expr _ = false
+
+(* rel_expr -> bool *)
+fun inline_rel_expr (Product (r1, r2)) =
+    inline_rel_expr r1 andalso inline_rel_expr r2
+  | inline_rel_expr Iden = true
+  | inline_rel_expr Ints = true
+  | inline_rel_expr None = true
+  | inline_rel_expr Univ = true
+  | inline_rel_expr (Atom _) = true
+  | inline_rel_expr (AtomSeq _) = true
+  | inline_rel_expr (Rel _) = true
+  | inline_rel_expr (Var _) = true
+  | inline_rel_expr (RelReg _) = true
+  | inline_rel_expr _ = false
+
+(* rel_expr -> rel_expr -> bool option *)
+fun rel_expr_equal None (Atom _) = SOME false
+  | rel_expr_equal None (AtomSeq (k, _)) = SOME (k = 0)
+  | rel_expr_equal (Atom _) None = SOME false
+  | rel_expr_equal (AtomSeq (k, _)) None = SOME (k = 0)
+  | rel_expr_equal (Atom j1) (Atom j2) = SOME (j1 = j2)
+  | rel_expr_equal (Atom j) (AtomSeq (k, j0)) = SOME (j = j0 andalso k = 1)
+  | rel_expr_equal (AtomSeq (k, j0)) (Atom j) = SOME (j = j0 andalso k = 1)
+  | rel_expr_equal (AtomSeq x1) (AtomSeq x2) = SOME (x1 = x2)
+  | rel_expr_equal r1 r2 = if r1 = r2 then SOME true else NONE
+
+(* rel_expr -> rel_expr -> bool option *)
+fun rel_expr_intersects (Atom j1) (Atom j2) = SOME (j1 = j2)
+  | rel_expr_intersects (Atom j) (AtomSeq (k, j0)) = SOME (j < j0 + k)
+  | rel_expr_intersects (AtomSeq (k, j0)) (Atom j) = SOME (j < j0 + k)
+  | rel_expr_intersects (AtomSeq (k1, j01)) (AtomSeq (k2, j02)) =
+    SOME (k1 > 0 andalso k2 > 0 andalso j01 + k1 > j02 andalso j02 + k2 > j01)
+  | rel_expr_intersects r1 r2 =
+    if is_none_product r1 orelse is_none_product r2 then SOME false else NONE
+
+(* int -> rel_expr *)
+fun empty_n_ary_rel 0 = raise ARG ("NitpickPeephole.empty_n_ary_rel", "0")
+  | empty_n_ary_rel n = funpow (n - 1) (curry Product None) None
+
+(* decl -> rel_expr *)
+fun decl_one_set (DeclOne (_, r)) = r
+  | decl_one_set _ =
+    raise ARG ("NitpickPeephole.decl_one_set", "not \"DeclOne\"")
+
+(* int_expr -> bool *)
+fun is_Num (Num _) = true
+  | is_Num _ = false
+(* int_expr -> int *)
+fun dest_Num (Num k) = k
+  | dest_Num _ = raise ARG ("NitpickPeephole.dest_Num", "not \"Num\"")
+(* int -> int -> int_expr list *)
+fun num_seq j0 n = map Num (index_seq j0 n)
+
+(* rel_expr -> rel_expr -> bool *)
+fun occurs_in_union r (Union (r1, r2)) =
+    occurs_in_union r r1 orelse occurs_in_union r r2
+  | occurs_in_union r r' = (r = r')
+
+(* rel_expr -> rel_expr -> rel_expr *)
+fun s_and True f2 = f2
+  | s_and False _ = False
+  | s_and f1 True = f1
+  | s_and _ False = False
+  | s_and f1 f2 = And (f1, f2)
+
+type kodkod_constrs = {
+  kk_all: decl list -> formula -> formula,
+  kk_exist: decl list -> formula -> formula,
+  kk_formula_let: expr_assign list -> formula -> formula,
+  kk_formula_if: formula -> formula -> formula -> formula,
+  kk_or: formula -> formula -> formula,
+  kk_not: formula -> formula,
+  kk_iff: formula -> formula -> formula,
+  kk_implies: formula -> formula -> formula,
+  kk_and: formula -> formula -> formula,
+  kk_subset: rel_expr -> rel_expr -> formula,
+  kk_rel_eq: rel_expr -> rel_expr -> formula,
+  kk_no: rel_expr -> formula,
+  kk_lone: rel_expr -> formula,
+  kk_one: rel_expr -> formula,
+  kk_some: rel_expr -> formula,
+  kk_rel_let: expr_assign list -> rel_expr -> rel_expr,
+  kk_rel_if: formula -> rel_expr -> rel_expr -> rel_expr,
+  kk_union: rel_expr -> rel_expr -> rel_expr,
+  kk_difference: rel_expr -> rel_expr -> rel_expr,
+  kk_override: rel_expr -> rel_expr -> rel_expr,
+  kk_intersect: rel_expr -> rel_expr -> rel_expr,
+  kk_product: rel_expr -> rel_expr -> rel_expr,
+  kk_join: rel_expr -> rel_expr -> rel_expr,
+  kk_closure: rel_expr -> rel_expr,
+  kk_reflexive_closure: rel_expr -> rel_expr,
+  kk_comprehension: decl list -> formula -> rel_expr,
+  kk_project: rel_expr -> int_expr list -> rel_expr,
+  kk_project_seq: rel_expr -> int -> int -> rel_expr,
+  kk_not3: rel_expr -> rel_expr,
+  kk_nat_less: rel_expr -> rel_expr -> rel_expr,
+  kk_int_less: rel_expr -> rel_expr -> rel_expr
+}
+
+(* We assume throughout that Kodkod variables have a "one" constraint. This is
+   always the case if Kodkod's skolemization is disabled. *)
+(* bool -> int -> int -> int -> kodkod_constrs *)
+fun kodkod_constrs optim nat_card int_card main_j0 =
+  let
+    val false_atom = Atom main_j0
+    val true_atom = Atom (main_j0 + 1)
+
+    (* bool -> int *)
+    val from_bool = atom_for_bool main_j0
+    (* int -> Kodkod.rel_expr *)
+    fun from_nat n = Atom (n + main_j0)
+    val from_int = Atom o atom_for_int (int_card, main_j0)
+    (* int -> int *)
+    fun to_nat j = j - main_j0
+    val to_int = int_for_atom (int_card, main_j0)
+
+    (* decl list -> formula -> formula *)
+    fun s_all _ True = True
+      | s_all _ False = False
+      | s_all [] f = f
+      | s_all ds (All (ds', f)) = All (ds @ ds', f)
+      | s_all ds f = All (ds, f)
+    fun s_exist _ True = True
+      | s_exist _ False = False
+      | s_exist [] f = f
+      | s_exist ds (Exist (ds', f)) = Exist (ds @ ds', f)
+      | s_exist ds f = Exist (ds, f)
+
+    (* expr_assign list -> formula -> formula *)
+    fun s_formula_let _ True = True
+      | s_formula_let _ False = False
+      | s_formula_let assigns f = FormulaLet (assigns, f)
+
+    (* formula -> formula *)
+    fun s_not True = False
+      | s_not False = True
+      | s_not (All (ds, f)) = Exist (ds, s_not f)
+      | s_not (Exist (ds, f)) = All (ds, s_not f)
+      | s_not (Or (f1, f2)) = And (s_not f1, s_not f2)
+      | s_not (Implies (f1, f2)) = And (f1, s_not f2)
+      | s_not (And (f1, f2)) = Or (s_not f1, s_not f2)
+      | s_not (Not f) = f
+      | s_not (No r) = Some r
+      | s_not (Some r) = No r
+      | s_not f = Not f
+
+    (* formula -> formula -> formula *)
+    fun s_or True _ = True
+      | s_or False f2 = f2
+      | s_or _ True = True
+      | s_or f1 False = f1
+      | s_or f1 f2 = if f1 = f2 then f1 else Or (f1, f2)
+    fun s_iff True f2 = f2
+      | s_iff False f2 = s_not f2
+      | s_iff f1 True = f1
+      | s_iff f1 False = s_not f1
+      | s_iff f1 f2 = if f1 = f2 then True else Iff (f1, f2)
+    fun s_implies True f2 = f2
+      | s_implies False _ = True
+      | s_implies _ True = True
+      | s_implies f1 False = s_not f1
+      | s_implies f1 f2 = if f1 = f2 then True else Implies (f1, f2)
+
+    (* formula -> formula -> formula -> formula *)
+    fun s_formula_if True f2 _ = f2
+      | s_formula_if False _ f3 = f3
+      | s_formula_if f1 True f3 = s_or f1 f3
+      | s_formula_if f1 False f3 = s_and (s_not f1) f3
+      | s_formula_if f1 f2 True = s_implies f1 f2
+      | s_formula_if f1 f2 False = s_and f1 f2
+      | s_formula_if f f1 f2 = FormulaIf (f, f1, f2)
+
+    (* rel_expr -> int_expr list -> rel_expr *)
+    fun s_project r is =
+      (case r of
+         Project (r1, is') =>
+         if forall is_Num is then
+           s_project r1 (map (nth is' o dest_Num) is)
+         else
+           raise SAME ()
+       | _ => raise SAME ())
+      handle SAME () =>
+             let val n = length is in
+               if arity_of_rel_expr r = n andalso is = num_seq 0 n then r
+               else Project (r, is)
+             end
+
+    (* rel_expr -> formula *)
+    fun s_no None = True
+      | s_no (Product (r1, r2)) = s_or (s_no r1) (s_no r2)
+      | s_no (Intersect (Closure (Kodkod.Rel x), Kodkod.Iden)) = Acyclic x
+      | s_no r = if is_one_rel_expr r then False else No r
+    fun s_lone None = True
+      | s_lone r = if is_one_rel_expr r then True else Lone r
+    fun s_one None = False
+      | s_one r =
+        if is_one_rel_expr r then
+          True
+        else if inline_rel_expr r then
+          case arity_of_rel_expr r of
+            1 => One r
+          | arity => foldl1 And (map (One o s_project r o single o Num)
+                                     (index_seq 0 arity))
+        else
+          One r
+    fun s_some None = False
+      | s_some (Atom _) = True
+      | s_some (Product (r1, r2)) = s_and (s_some r1) (s_some r2)
+      | s_some r = if is_one_rel_expr r then True else Some r
+
+    (* rel_expr -> rel_expr *)
+    fun s_not3 (Atom j) = Atom (if j = main_j0 then j + 1 else j - 1)
+      | s_not3 (r as Join (r1, r2)) =
+        if r2 = not3_rel then r1 else Join (r, not3_rel)
+      | s_not3 r = Join (r, not3_rel)
+
+    (* rel_expr -> rel_expr -> formula *)
+    fun s_rel_eq r1 r2 =
+      (case (r1, r2) of
+         (Join (r11, r12), _) =>
+         if r12 = not3_rel then s_rel_eq r11 (s_not3 r2) else raise SAME ()
+       | (_, Join (r21, r22)) =>
+         if r22 = not3_rel then s_rel_eq r21 (s_not3 r1) else raise SAME ()
+       | _ => raise SAME ())
+      handle SAME () =>
+             case rel_expr_equal r1 r2 of
+               SOME true => True
+             | SOME false => False
+             | NONE =>
+               case (r1, r2) of
+                 (_, RelIf (f, r21, r22)) =>
+                  if inline_rel_expr r1 then
+                    s_formula_if f (s_rel_eq r1 r21) (s_rel_eq r1 r22)
+                  else
+                    RelEq (r1, r2)
+               | (RelIf (f, r11, r12), _) =>
+                  if inline_rel_expr r2 then
+                    s_formula_if f (s_rel_eq r11 r2) (s_rel_eq r12 r2)
+                  else
+                    RelEq (r1, r2)
+               | (_, Kodkod.None) => s_no r1
+               | (Kodkod.None, _) => s_no r2
+               | _ => RelEq (r1, r2)
+    fun s_subset (Atom j1) (Atom j2) = formula_for_bool (j1 = j2)
+      | s_subset (Atom j) (AtomSeq (k, j0)) =
+        formula_for_bool (j >= j0 andalso j < j0 + k)
+      | s_subset (r1 as Union (r11, r12)) r2 =
+        s_and (s_subset r11 r2) (s_subset r12 r2)
+      | s_subset r1 (r2 as Union (r21, r22)) =
+        if is_one_rel_expr r1 then
+          s_or (s_subset r1 r21) (s_subset r1 r22)
+        else
+          if s_subset r1 r21 = True orelse s_subset r1 r22 = True
+             orelse r1 = r2 then
+            True
+          else
+            Subset (r1, r2)
+      | s_subset r1 r2 =
+        if r1 = r2 orelse is_none_product r1 then True
+        else if is_none_product r2 then s_no r1
+        else if forall is_one_rel_expr [r1, r2] then s_rel_eq r1 r2
+        else Subset (r1, r2)
+
+    (* expr_assign list -> rel_expr -> rel_expr *)
+    fun s_rel_let [b as AssignRelReg (x', r')] (r as RelReg x) =
+        if x = x' then r' else RelLet ([b], r)
+      | s_rel_let bs r = RelLet (bs, r)
+
+    (* formula -> rel_expr -> rel_expr -> rel_expr *)
+    fun s_rel_if f r1 r2 =
+      (case (f, r1, r2) of
+         (True, _, _) => r1
+       | (False, _, _) => r2
+       | (No r1', None, RelIf (One r2', r3', r4')) =>
+         if r1' = r2' andalso r2' = r3' then s_rel_if (Lone r1') r1' r4'
+         else raise SAME ()
+       | _ => raise SAME ())
+      handle SAME () => if r1 = r2 then r1 else RelIf (f, r1, r2)
+
+    (* rel_expr -> rel_expr -> rel_expr *)
+    fun s_union r1 (Union (r21, r22)) = s_union (s_union r1 r21) r22
+      | s_union r1 r2 =
+        if is_none_product r1 then r2
+        else if is_none_product r2 then r1
+        else if r1 = r2 then r1
+        else if occurs_in_union r2 r1 then r1
+        else Union (r1, r2)
+    fun s_difference r1 r2 =
+      if is_none_product r1 orelse is_none_product r2 then r1
+      else if r1 = r2 then empty_n_ary_rel (arity_of_rel_expr r1)
+      else Difference (r1, r2)
+    fun s_override r1 r2 =
+      if is_none_product r2 then r1
+      else if is_none_product r1 then r2
+      else Override (r1, r2)
+    fun s_intersect r1 r2 =
+      case rel_expr_intersects r1 r2 of
+        SOME true => if r1 = r2 then r1 else Intersect (r1, r2)
+      | SOME false => empty_n_ary_rel (arity_of_rel_expr r1)
+      | NONE => if is_none_product r1 then r1
+                else if is_none_product r2 then r2
+                else Intersect (r1, r2)
+    fun s_product r1 r2 =
+      if is_none_product r1 then
+        Product (r1, empty_n_ary_rel (arity_of_rel_expr r2))
+      else if is_none_product r2 then
+        Product (empty_n_ary_rel (arity_of_rel_expr r1), r2)
+      else
+        Product (r1, r2)
+    fun s_join r1 (Product (Product (r211, r212), r22)) =
+        Product (s_join r1 (Product (r211, r212)), r22)
+      | s_join (Product (r11, Product (r121, r122))) r2 =
+        Product (r11, s_join (Product (r121, r122)) r2)
+      | s_join None r = empty_n_ary_rel (arity_of_rel_expr r - 1)
+      | s_join r None = empty_n_ary_rel (arity_of_rel_expr r - 1)
+      | s_join (Product (None, None)) r = empty_n_ary_rel (arity_of_rel_expr r)
+      | s_join r (Product (None, None)) = empty_n_ary_rel (arity_of_rel_expr r)
+      | s_join Iden r2 = r2
+      | s_join r1 Iden = r1
+      | s_join (Product (r1, r2)) Univ =
+        if arity_of_rel_expr r2 = 1 then r1
+        else Product (r1, s_join r2 Univ)
+      | s_join Univ (Product (r1, r2)) =
+        if arity_of_rel_expr r1 = 1 then r2
+        else Product (s_join Univ r1, r2)
+      | s_join r1 (r2 as Product (r21, r22)) =
+        if arity_of_rel_expr r1 = 1 then
+          case rel_expr_intersects r1 r21 of
+            SOME true => r22
+          | SOME false => empty_n_ary_rel (arity_of_rel_expr r2 - 1)
+          | NONE => Join (r1, r2)
+        else
+          Join (r1, r2)
+      | s_join (r1 as Product (r11, r12)) r2 =
+        if arity_of_rel_expr r2 = 1 then
+          case rel_expr_intersects r2 r12 of
+            SOME true => r11
+          | SOME false => empty_n_ary_rel (arity_of_rel_expr r1 - 1)
+          | NONE => Join (r1, r2)
+        else
+          Join (r1, r2)
+      | s_join r1 (r2 as RelIf (f, r21, r22)) =
+        if inline_rel_expr r1 then s_rel_if f (s_join r1 r21) (s_join r1 r22)
+        else Join (r1, r2)
+      | s_join (r1 as RelIf (f, r11, r12)) r2 =
+        if inline_rel_expr r2 then s_rel_if f (s_join r11 r2) (s_join r12 r2)
+        else Join (r1, r2)
+      | s_join (r1 as Atom j1) (r2 as Rel (2, j2)) =
+        if r2 = suc_rel then
+          let val n = to_nat j1 + 1 in
+            if n < nat_card then from_nat n else None
+          end
+        else
+          Join (r1, r2)
+      | s_join r1 (r2 as Project (r21, Num k :: is)) =
+        if k = arity_of_rel_expr r21 - 1 andalso arity_of_rel_expr r1 = 1 then
+          s_project (s_join r21 r1) is
+        else
+          Join (r1, r2)
+      | s_join r1 (Join (r21, r22 as Rel (3, j22))) =
+        ((if r22 = nat_add_rel then
+            case (r21, r1) of
+              (Atom j1, Atom j2) =>
+              let val n = to_nat j1 + to_nat j2 in
+                if n < nat_card then from_nat n else None
+              end
+            | (Atom j, r) =>
+              (case to_nat j of
+                 0 => r
+               | 1 => s_join r suc_rel
+               | _ => raise SAME ())
+            | (r, Atom j) =>
+              (case to_nat j of
+                 0 => r
+               | 1 => s_join r suc_rel
+               | _ => raise SAME ())
+            | _ => raise SAME ()
+          else if r22 = nat_subtract_rel then
+            case (r21, r1) of
+              (Atom j1, Atom j2) => from_nat (to_nat j1 nat_minus to_nat j2)
+            | _ => raise SAME ()
+          else if r22 = nat_multiply_rel then
+            case (r21, r1) of
+              (Atom j1, Atom j2) =>
+              let val n = to_nat j1 * to_nat j2 in
+                if n < nat_card then from_nat n else None
+              end
+            | (Atom j, r) =>
+              (case to_nat j of 0 => Atom j | 1 => r | _ => raise SAME ())
+            | (r, Atom j) =>
+              (case to_nat j of 0 => Atom j | 1 => r | _ => raise SAME ())
+            | _ => raise SAME ()
+          else
+            raise SAME ())
+         handle SAME () => List.foldr Join r22 [r1, r21])
+      | s_join r1 r2 = Join (r1, r2)
+
+    (* rel_expr -> rel_expr *)
+    fun s_closure Iden = Iden
+      | s_closure r = if is_none_product r then r else Closure r
+    fun s_reflexive_closure Iden = Iden
+      | s_reflexive_closure r =
+        if is_none_product r then Iden else ReflexiveClosure r
+
+    (* decl list -> formula -> rel_expr *)
+    fun s_comprehension ds False = empty_n_ary_rel (length ds)
+      | s_comprehension ds True = fold1 s_product (map decl_one_set ds)
+      | s_comprehension [d as DeclOne ((1, j1), r)]
+                        (f as RelEq (Var (1, j2), Atom j)) =
+        if j1 = j2 andalso rel_expr_intersects (Atom j) r = SOME true then
+          Atom j
+        else
+          Comprehension ([d], f)
+      | s_comprehension ds f = Comprehension (ds, f)
+
+    (* rel_expr -> int -> int -> rel_expr *)
+    fun s_project_seq r =
+      let
+        (* int -> rel_expr -> int -> int -> rel_expr *)
+        fun aux arity r j0 n =
+          if j0 = 0 andalso arity = n then
+            r
+          else case r of
+            RelIf (f, r1, r2) =>
+            s_rel_if f (aux arity r1 j0 n) (aux arity r2 j0 n)
+          | Product (r1, r2) =>
+            let
+              val arity2 = arity_of_rel_expr r2
+              val arity1 = arity - arity2
+              val n1 = Int.min (arity1 nat_minus j0, n)
+              val n2 = n - n1
+              (* unit -> rel_expr *)
+              fun one () = aux arity1 r1 j0 n1
+              fun two () = aux arity2 r2 (j0 nat_minus arity1) n2
+            in
+              case (n1, n2) of
+                (0, _) => s_rel_if (s_some r1) (two ()) (empty_n_ary_rel n2)
+              | (_, 0) => s_rel_if (s_some r2) (one ()) (empty_n_ary_rel n1)
+              | _ => s_product (one ()) (two ())
+            end
+          | _ => s_project r (num_seq j0 n)
+      in aux (arity_of_rel_expr r) r end
+
+    (* rel_expr -> rel_expr -> rel_expr *)
+    fun s_nat_subtract r1 r2 = fold s_join [r1, r2] nat_subtract_rel
+    fun s_nat_less (Atom j1) (Atom j2) = from_bool (j1 < j2)
+      | s_nat_less r1 r2 = fold s_join [r1, r2] nat_less_rel
+    fun s_int_less (Atom j1) (Atom j2) = from_bool (to_int j1 < to_int j2)
+      | s_int_less r1 r2 = fold s_join [r1, r2] int_less_rel
+
+    (* rel_expr -> int -> int -> rel_expr *)
+    fun d_project_seq r j0 n = Project (r, num_seq j0 n)
+    (* rel_expr -> rel_expr *)
+    fun d_not3 r = Join (r, not3_rel)
+    (* rel_expr -> rel_expr -> rel_expr *)
+    fun d_nat_subtract r1 r2 = List.foldl Join nat_subtract_rel [r1, r2]
+    fun d_nat_less r1 r2 = List.foldl Join nat_less_rel [r1, r2]
+    fun d_int_less r1 r2 = List.foldl Join int_less_rel [r1, r2]
+  in
+    if optim then
+      {kk_all = s_all, kk_exist = s_exist, kk_formula_let = s_formula_let,
+       kk_formula_if = s_formula_if, kk_or = s_or, kk_not = s_not,
+       kk_iff = s_iff, kk_implies = s_implies, kk_and = s_and,
+       kk_subset = s_subset, kk_rel_eq = s_rel_eq, kk_no = s_no,
+       kk_lone = s_lone, kk_one = s_one, kk_some = s_some,
+       kk_rel_let = s_rel_let, kk_rel_if = s_rel_if, kk_union = s_union,
+       kk_difference = s_difference, kk_override = s_override,
+       kk_intersect = s_intersect, kk_product = s_product, kk_join = s_join,
+       kk_closure = s_closure, kk_reflexive_closure = s_reflexive_closure,
+       kk_comprehension = s_comprehension, kk_project = s_project,
+       kk_project_seq = s_project_seq, kk_not3 = s_not3,
+       kk_nat_less = s_nat_less, kk_int_less = s_int_less}
+    else
+      {kk_all = curry All, kk_exist = curry Exist,
+       kk_formula_let = curry FormulaLet, kk_formula_if = curry3 FormulaIf,
+       kk_or = curry Or,kk_not = Not, kk_iff = curry Iff, kk_implies = curry
+       Implies, kk_and = curry And, kk_subset = curry Subset, kk_rel_eq = curry
+       RelEq, kk_no = No, kk_lone = Lone, kk_one = One, kk_some = Some,
+       kk_rel_let = curry RelLet, kk_rel_if = curry3 RelIf, kk_union = curry
+       Union, kk_difference = curry Difference, kk_override = curry Override,
+       kk_intersect = curry Intersect, kk_product = curry Product,
+       kk_join = curry Join, kk_closure = Closure,
+       kk_reflexive_closure = ReflexiveClosure, kk_comprehension = curry
+       Comprehension, kk_project = curry Project,
+       kk_project_seq = d_project_seq, kk_not3 = d_not3,
+       kk_nat_less = d_nat_less, kk_int_less = d_int_less}
+  end
+
+end;