--- a/src/HOL/Algebra/FiniteProduct.thy Thu May 26 16:57:14 2016 +0200
+++ b/src/HOL/Algebra/FiniteProduct.thy Thu May 26 17:51:22 2016 +0200
@@ -12,10 +12,10 @@
subsubsection \<open>Inductive Definition of a Relation for Products over Sets\<close>
-text \<open>Instantiation of locale @{text LC} of theory @{text Finite_Set} is not
+text \<open>Instantiation of locale \<open>LC\<close> of theory \<open>Finite_Set\<close> is not
possible, because here we have explicit typing rules like
- @{text "x \<in> carrier G"}. We introduce an explicit argument for the domain
- @{text D}.\<close>
+ \<open>x \<in> carrier G\<close>. We introduce an explicit argument for the domain
+ \<open>D\<close>.\<close>
inductive_set
foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
@@ -111,7 +111,7 @@
apply (erule foldSetD.cases)
apply blast
apply clarify
- txt \<open>force simplification of @{text "card A < card (insert ...)"}.\<close>
+ txt \<open>force simplification of \<open>card A < card (insert ...)\<close>.\<close>
apply (erule rev_mp)
apply (simp add: less_Suc_eq_le)
apply (rule impI)
@@ -221,7 +221,7 @@
==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
by (simp add: foldD_nest_Un_Int)
--- \<open>Delete rules to do with @{text foldSetD} relation.\<close>
+\<comment> \<open>Delete rules to do with \<open>foldSetD\<close> relation.\<close>
declare foldSetD_imp_finite [simp del]
empty_foldSetDE [rule del]
@@ -233,8 +233,8 @@
text \<open>Commutative Monoids\<close>
text \<open>
- We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
- instead of @{text "'b => 'a => 'a"}.
+ We enter a more restrictive context, with \<open>f :: 'a => 'a => 'a\<close>
+ instead of \<open>'b => 'a => 'a\<close>.
\<close>
locale ACeD =
@@ -299,7 +299,7 @@
("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
translations
"\<Otimes>\<^bsub>G\<^esub>i\<in>A. b" \<rightleftharpoons> "CONST finprod G (%i. b) A"
- -- \<open>Beware of argument permutation!\<close>
+ \<comment> \<open>Beware of argument permutation!\<close>
lemma (in comm_monoid) finprod_empty [simp]:
"finprod G f {} = \<one>"
@@ -367,7 +367,7 @@
"[| finite A; finite B; g \<in> A \<rightarrow> carrier G; g \<in> B \<rightarrow> carrier G |] ==>
finprod G g (A Un B) \<otimes> finprod G g (A Int B) =
finprod G g A \<otimes> finprod G g B"
--- \<open>The reversed orientation looks more natural, but LOOPS as a simprule!\<close>
+\<comment> \<open>The reversed orientation looks more natural, but LOOPS as a simprule!\<close>
proof (induct set: finite)
case empty then show ?case by simp
next
@@ -451,7 +451,7 @@
by (rule finprod_cong') (auto simp add: simp_implies_def)
text \<open>Usually, if this rule causes a failed congruence proof error,
- the reason is that the premise @{text "g \<in> B \<rightarrow> carrier G"} cannot be shown.
+ the reason is that the premise \<open>g \<in> B \<rightarrow> carrier G\<close> cannot be shown.
Adding @{thm [source] Pi_def} to the simpset is often useful.
For this reason, @{thm [source] finprod_cong}
is not added to the simpset by default.