--- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Thu May 26 16:57:14 2016 +0200
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Thu May 26 17:51:22 2016 +0200
@@ -16,7 +16,7 @@
subsection \<open>Specification of GCD on nats\<close>
definition
- is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- \<open>@{term gcd} as a relation\<close>
+ is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where \<comment> \<open>@{term gcd} as a relation\<close>
"is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
(\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)"
@@ -69,7 +69,7 @@
declare gcd.simps [simp del]
text \<open>
- \medskip @{term "gcd m n"} divides @{text m} and @{text n}. The
+ \medskip @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>. The
conjunctions don't seem provable separately.
\<close>
@@ -130,7 +130,7 @@
\<close>
lemma gcd_mult_distrib2: "k * gcd m n = gcd (k * m) (k * n)"
- -- \<open>@{cite \<open>page 27\<close> davenport92}\<close>
+ \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
apply (induct m n rule: gcd_induct)
apply simp
apply (case_tac "k = 0")
@@ -697,7 +697,7 @@
done
lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute
- -- \<open>addition is an AC-operator\<close>
+ \<comment> \<open>addition is an AC-operator\<close>
lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd m n = zgcd (k * m) (k * n)"
by (simp del: minus_mult_right [symmetric]