--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy Thu Sep 23 12:48:49 2004 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy Mon Sep 27 10:27:34 2004 +0200
@@ -82,7 +82,17 @@
normed space @{text "(V, \<parallel>\<cdot>\<parallel>)"} has a function norm.
*}
-lemma (in normed_vectorspace) fn_norm_works: (* FIXME bug with "(in fn_norm)" !? *)
+(* Alternative statement of the lemma as
+ lemma (in fn_norm)
+ includes normed_vectorspace + continuous
+ shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
+ is not possible:
+ fn_norm contrains parameter norm to type "'a::zero => real",
+ normed_vectorspace and continuous contrain this parameter to
+ "'a::{minus, plus, zero} => real, which is less general.
+*)
+
+lemma (in normed_vectorspace) fn_norm_works:
includes fn_norm + continuous
shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
proof -
@@ -154,7 +164,7 @@
shows "b \<le> \<parallel>f\<parallel>\<hyphen>V"
proof -
have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
- by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro])
+ by (unfold B_def fn_norm_def) (rule fn_norm_works [OF continuous.intro])
from this and b show ?thesis ..
qed
@@ -164,7 +174,7 @@
shows "\<parallel>f\<parallel>\<hyphen>V \<le> y"
proof -
have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
- by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro])
+ by (unfold B_def fn_norm_def) (rule fn_norm_works [OF continuous.intro])
from this and b show ?thesis ..
qed
@@ -178,7 +188,7 @@
So it is @{text "\<ge> 0"} if all elements in @{text B} are @{text "\<ge>
0"}, provided the supremum exists and @{text B} is not empty. *}
have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
- by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro])
+ by (unfold B_def fn_norm_def) (rule fn_norm_works [OF continuous.intro])
moreover have "0 \<in> B V f" ..
ultimately show ?thesis ..
qed
@@ -201,7 +211,7 @@
also have "\<bar>\<dots>\<bar> = 0" by simp
also have a: "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
by (unfold B_def fn_norm_def)
- (rule fn_norm_ge_zero [OF _ continuous.intro])
+ (rule fn_norm_ge_zero [OF continuous.intro])
have "0 \<le> norm x" ..
with a have "0 \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" by (simp add: zero_le_mult_iff)
finally show "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" .
@@ -215,7 +225,7 @@
from x and neq have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<in> B V f"
by (auto simp add: B_def real_divide_def)
then show "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> \<parallel>f\<parallel>\<hyphen>V"
- by (unfold B_def fn_norm_def) (rule fn_norm_ub [OF _ continuous.intro])
+ by (unfold B_def fn_norm_def) (rule fn_norm_ub [OF continuous.intro])
qed
finally show ?thesis .
qed