src/HOL/Isar_examples/MutilatedCheckerboard.thy
changeset 7480 0a0e0dbe1269
parent 7447 d09f39cd3b6e
child 7565 bfa85f429629
--- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy	Sat Sep 04 21:12:15 1999 +0200
+++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy	Sat Sep 04 21:13:01 1999 +0200
@@ -28,21 +28,21 @@
 
 lemma tiling_Un: "t : tiling A --> u : tiling A --> t Int u = {} --> t Un u : tiling A";
 proof;
-  assume "t : tiling A" (is "_ : ??T");
-  thus "u : ??T --> t Int u = {} --> t Un u : ??T" (is "??P t");
+  assume "t : tiling A" (is "_ : ?T");
+  thus "u : ?T --> t Int u = {} --> t Un u : ?T" (is "?P t");
   proof (induct t set: tiling);
-    show "??P {}"; by simp;
+    show "?P {}"; by simp;
 
     fix a t;
-    assume "a : A" "t : ??T" "??P t" "a <= - t";
-    show "??P (a Un t)";
+    assume "a : A" "t : ?T" "?P t" "a <= - t";
+    show "?P (a Un t)";
     proof (intro impI);
-      assume "u : ??T" "(a Un t) Int u = {}";
-      have hyp: "t Un u: ??T"; by blast;
+      assume "u : ?T" "(a Un t) Int u = {}";
+      have hyp: "t Un u: ?T"; by blast;
       have "a <= - (t Un u)"; by blast;
-      with _ hyp; have "a Un (t Un u) : ??T"; by (rule tiling.Un);
+      with _ hyp; have "a Un (t Un u) : ?T"; by (rule tiling.Un);
       also; have "a Un (t Un u) = (a Un t) Un u"; by (simp only: Un_assoc);
-      finally; show "... : ??T"; .;
+      finally; show "... : ?T"; .;
     qed;
   qed;
 qed;
@@ -113,41 +113,41 @@
 
 
 lemma dominoes_tile_row: "{i} Times below (2 * n) : tiling domino"
-  (is "??P n" is "??B n : ??T");
+  (is "?P n" is "?B n : ?T");
 proof (induct n);
-  show "??P 0"; by (simp add: below_0 tiling.empty);
+  show "?P 0"; by (simp add: below_0 tiling.empty);
 
-  fix n; assume hyp: "??P n";
-  let ??a = "{i} Times {2 * n + 1} Un {i} Times {2 * n}";
+  fix n; assume hyp: "?P n";
+  let ?a = "{i} Times {2 * n + 1} Un {i} Times {2 * n}";
 
-  have "??B (Suc n) = ??a Un ??B n"; by (simp add: Sigma_Suc Un_assoc);
-  also; have "... : ??T";
+  have "?B (Suc n) = ?a Un ?B n"; by (simp add: Sigma_Suc Un_assoc);
+  also; have "... : ?T";
   proof (rule tiling.Un);
     have "{(i, 2 * n), (i, 2 * n + 1)} : domino"; by (rule domino.horiz);
-    also; have "{(i, 2 * n), (i, 2 * n + 1)} = ??a"; by blast;
+    also; have "{(i, 2 * n), (i, 2 * n + 1)} = ?a"; by blast;
     finally; show "... : domino"; .;
-    from hyp; show "??B n : ??T"; .;
-    show "??a <= - ??B n"; by force;
+    from hyp; show "?B n : ?T"; .;
+    show "?a <= - ?B n"; by force;
   qed;
-  finally; show "??P (Suc n)"; .;
+  finally; show "?P (Suc n)"; .;
 qed;
 
 lemma dominoes_tile_matrix: "below m Times below (2 * n) : tiling domino"
-  (is "??P m" is "??B m : ??T");
+  (is "?P m" is "?B m : ?T");
 proof (induct m);
-  show "??P 0"; by (simp add: below_0 tiling.empty);
+  show "?P 0"; by (simp add: below_0 tiling.empty);
 
-  fix m; assume hyp: "??P m";
-  let ??t = "{m} Times below (2 * n)";
+  fix m; assume hyp: "?P m";
+  let ?t = "{m} Times below (2 * n)";
 
-  have "??B (Suc m) = ??t Un ??B m"; by (simp add: Sigma_Suc);
-  also; have "... : ??T";
+  have "?B (Suc m) = ?t Un ?B m"; by (simp add: Sigma_Suc);
+  also; have "... : ?T";
   proof (rule tiling_Un [rulify]);
-    show "??t : ??T"; by (rule dominoes_tile_row);
-    from hyp; show "??B m : ??T"; .;
-    show "??t Int ??B m = {}"; by blast;
+    show "?t : ?T"; by (rule dominoes_tile_row);
+    from hyp; show "?B m : ?T"; .;
+    show "?t Int ?B m = {}"; by blast;
   qed;
-  finally; show "??P (Suc m)"; .;
+  finally; show "?P (Suc m)"; .;
 qed;
 
 
@@ -155,13 +155,13 @@
 proof -;
   assume "b < 2";
   assume "d : domino";
-  thus ??thesis (is "??P d");
+  thus ?thesis (is "?P d");
   proof (induct d set: domino);
     have b_cases: "b = 0 | b = 1"; by arith;
     fix i j;
     note [simp] = evnodd_empty evnodd_insert mod_Suc;
-    from b_cases; show "??P {(i, j), (i, j + 1)}"; by rule auto;
-    from b_cases; show "??P {(i, j), (i + 1, j)}"; by rule auto;
+    from b_cases; show "?P {(i, j), (i, j + 1)}"; by rule auto;
+    from b_cases; show "?P {(i, j), (i + 1, j)}"; by rule auto;
   qed;
 qed;
 
@@ -175,54 +175,54 @@
 
 section {* Tilings of dominoes *};
 
-lemma tiling_domino_finite: "t : tiling domino ==> finite t" (is "t : ??T ==> ??F t");
+lemma tiling_domino_finite: "t : tiling domino ==> finite t" (is "t : ?T ==> ?F t");
 proof -;
-  assume "t : ??T";
-  thus "??F t";
+  assume "t : ?T";
+  thus "?F t";
   proof (induct t set: tiling);
-    show "??F {}"; by (rule Finites.emptyI);
-    fix a t; assume "??F t";
-    assume "a : domino"; hence "??F a"; by (rule domino_finite);
-    thus "??F (a Un t)"; by (rule finite_UnI);
+    show "?F {}"; by (rule Finites.emptyI);
+    fix a t; assume "?F t";
+    assume "a : domino"; hence "?F a"; by (rule domino_finite);
+    thus "?F (a Un t)"; by (rule finite_UnI);
   qed;
 qed;
 
 lemma tiling_domino_01: "t : tiling domino ==> card (evnodd t 0) = card (evnodd t 1)"
-  (is "t : ??T ==> ??P t");
+  (is "t : ?T ==> ?P t");
 proof -;
-  assume "t : ??T";
-  thus "??P t";
+  assume "t : ?T";
+  thus "?P t";
   proof (induct t set: tiling);
-    show "??P {}"; by (simp add: evnodd_def);
+    show "?P {}"; by (simp add: evnodd_def);
 
     fix a t;
-    let ??e = evnodd;
-    assume "a : domino" "t : ??T"
-      and hyp: "card (??e t 0) = card (??e t 1)"
+    let ?e = evnodd;
+    assume "a : domino" "t : ?T"
+      and hyp: "card (?e t 0) = card (?e t 1)"
       and "a <= - t";
 
-    have card_suc: "!!b. b < 2 ==> card (??e (a Un t) b) = Suc (card (??e t b))";
+    have card_suc: "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))";
     proof -;
       fix b; assume "b < 2";
-      have "EX i j. ??e a b = {(i, j)}"; by (rule domino_singleton);
-      thus "??thesis b";
+      have "EX i j. ?e a b = {(i, j)}"; by (rule domino_singleton);
+      thus "?thesis b";
       proof (elim exE);
-	have "??e (a Un t) b = ??e a b Un ??e t b"; by (rule evnodd_Un);
-	also; fix i j; assume "??e a b = {(i, j)}";
-	also; have "... Un ??e t b = insert (i, j) (??e t b)"; by simp;
-	also; have "card ... = Suc (card (??e t b))";
+	have "?e (a Un t) b = ?e a b Un ?e t b"; by (rule evnodd_Un);
+	also; fix i j; assume "?e a b = {(i, j)}";
+	also; have "... Un ?e t b = insert (i, j) (?e t b)"; by simp;
+	also; have "card ... = Suc (card (?e t b))";
 	proof (rule card_insert_disjoint);
-	  show "finite (??e t b)"; by (rule evnodd_finite, rule tiling_domino_finite);
-	  have "(i, j) : ??e a b"; by asm_simp;
-	  thus "(i, j) ~: ??e t b"; by (force dest: evnoddD);
+	  show "finite (?e t b)"; by (rule evnodd_finite, rule tiling_domino_finite);
+	  have "(i, j) : ?e a b"; by asm_simp;
+	  thus "(i, j) ~: ?e t b"; by (force dest: evnoddD);
 	qed;
-	finally; show ??thesis; .;
+	finally; show ?thesis; .;
       qed;
     qed;
-    hence "card (??e (a Un t) 0) = Suc (card (??e t 0))"; by simp;
-    also; from hyp; have "card (??e t 0) = card (??e t 1)"; .;
-    also; from card_suc; have "Suc ... = card (??e (a Un t) 1)"; by simp;
-    finally; show "??P (a Un t)"; .;
+    hence "card (?e (a Un t) 0) = Suc (card (?e t 0))"; by simp;
+    also; from hyp; have "card (?e t 0) = card (?e t 1)"; .;
+    also; from card_suc; have "Suc ... = card (?e (a Un t) 1)"; by simp;
+    finally; show "?P (a Un t)"; .;
   qed;
 qed;
 
@@ -236,37 +236,37 @@
 
 theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino";
 proof (unfold mutilated_board_def);
-  let ??T = "tiling domino";
-  let ??t = "below (2 * (m + 1)) Times below (2 * (n + 1))";
-  let ??t' = "??t - {(0, 0)}";
-  let ??t'' = "??t' - {(2 * m + 1, 2 * n + 1)}";
-  show "??t'' ~: ??T";
+  let ?T = "tiling domino";
+  let ?t = "below (2 * (m + 1)) Times below (2 * (n + 1))";
+  let ?t' = "?t - {(0, 0)}";
+  let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}";
+  show "?t'' ~: ?T";
   proof;
-    have t: "??t : ??T"; by (rule dominoes_tile_matrix);
-    assume t'': "??t'' : ??T";
+    have t: "?t : ?T"; by (rule dominoes_tile_matrix);
+    assume t'': "?t'' : ?T";
 
-    let ??e = evnodd;
-    have fin: "finite (??e ??t 0)"; by (rule evnodd_finite, rule tiling_domino_finite, rule t);
+    let ?e = evnodd;
+    have fin: "finite (?e ?t 0)"; by (rule evnodd_finite, rule tiling_domino_finite, rule t);
 
     note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff;
-    have "card (??e ??t'' 0) < card (??e ??t' 0)";
+    have "card (?e ?t'' 0) < card (?e ?t' 0)";
     proof -;
-      have "card (??e ??t' 0 - {(2 * m + 1, 2 * n + 1)}) < card (??e ??t' 0)";
+      have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)}) < card (?e ?t' 0)";
       proof (rule card_Diff1_less);
-	show "finite (??e ??t' 0)"; by (rule finite_subset, rule fin) force;
-	show "(2 * m + 1, 2 * n + 1) : ??e ??t' 0"; by simp;
+	show "finite (?e ?t' 0)"; by (rule finite_subset, rule fin) force;
+	show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0"; by simp;
       qed;
-      thus ??thesis; by simp;
+      thus ?thesis; by simp;
     qed;
-    also; have "... < card (??e ??t 0)";
+    also; have "... < card (?e ?t 0)";
     proof -;
-      have "(0, 0) : ??e ??t 0"; by simp;
-      with fin; have "card (??e ??t 0 - {(0, 0)}) < card (??e ??t 0)"; by (rule card_Diff1_less);
-      thus ??thesis; by simp;
+      have "(0, 0) : ?e ?t 0"; by simp;
+      with fin; have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)"; by (rule card_Diff1_less);
+      thus ?thesis; by simp;
     qed;
-    also; from t; have "... = card (??e ??t 1)"; by (rule tiling_domino_01);
-    also; have "??e ??t 1 = ??e ??t'' 1"; by simp;
-    also; from t''; have "card ... = card (??e ??t'' 0)"; by (rule tiling_domino_01 [RS sym]);
+    also; from t; have "... = card (?e ?t 1)"; by (rule tiling_domino_01);
+    also; have "?e ?t 1 = ?e ?t'' 1"; by simp;
+    also; from t''; have "card ... = card (?e ?t'' 0)"; by (rule tiling_domino_01 [RS sym]);
     finally; show False; ..;
   qed;
 qed;