src/HOL/Tools/Sledgehammer/sledgehammer_util.ML
changeset 43085 0a2f5b86bdd7
parent 43043 1406f6fc5dc3
child 46957 0c15caf47040
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Tue May 31 11:21:47 2011 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Tue May 31 16:38:36 2011 +0200
@@ -11,26 +11,7 @@
   val simplify_spaces : string -> string
   val parse_bool_option : bool -> string -> string -> bool option
   val parse_time_option : string -> string -> Time.time option
-  val string_from_ext_time : bool * Time.time -> string
-  val string_from_time : Time.time -> string
-  val nat_subscript : int -> string
-  val unyxml : string -> string
-  val maybe_quote : string -> string
-  val typ_of_dtyp :
-    Datatype_Aux.descr -> (Datatype_Aux.dtyp * typ) list -> Datatype_Aux.dtyp
-    -> typ
-  val varify_type : Proof.context -> typ -> typ
-  val instantiate_type : theory -> typ -> typ -> typ -> typ
-  val varify_and_instantiate_type : Proof.context -> typ -> typ -> typ -> typ
-  val is_type_surely_finite : Proof.context -> typ -> bool
-  val is_type_surely_infinite : Proof.context -> typ list -> typ -> bool
-  val monomorphic_term : Type.tyenv -> term -> term
-  val eta_expand : typ list -> term -> int -> term
-  val transform_elim_prop : term -> term
-  val specialize_type : theory -> (string * typ) -> term -> term
   val subgoal_count : Proof.state -> int
-  val strip_subgoal :
-    Proof.context -> thm -> int -> (string * typ) list * term list * term
   val normalize_chained_theorems : thm list -> thm list
   val reserved_isar_keyword_table : unit -> unit Symtab.table
 end;
@@ -38,10 +19,12 @@
 structure Sledgehammer_Util : SLEDGEHAMMER_UTIL =
 struct
 
+open ATP_Util
+
 fun plural_s n = if n = 1 then "" else "s"
 
 val serial_commas = Try.serial_commas
-val simplify_spaces = ATP_Proof.strip_spaces false (K true)
+val simplify_spaces = strip_spaces false (K true)
 
 fun parse_bool_option option name s =
   (case s of
@@ -69,191 +52,8 @@
         SOME (seconds (the secs))
     end
 
-fun string_from_ext_time (plus, time) =
-  let val ms = Time.toMilliseconds time in
-    (if plus then "> " else "") ^
-    (if plus andalso ms mod 1000 = 0 then
-       signed_string_of_int (ms div 1000) ^ " s"
-     else if ms < 1000 then
-       signed_string_of_int ms ^ " ms"
-     else
-       string_of_real (0.01 * Real.fromInt (ms div 10)) ^ " s")
-  end
-
-val string_from_time = string_from_ext_time o pair false
-
-val subscript = implode o map (prefix "\<^isub>") o raw_explode  (* FIXME Symbol.explode (?) *)
-fun nat_subscript n =
-  n |> string_of_int |> print_mode_active Symbol.xsymbolsN ? subscript
-
-val unyxml = XML.content_of o YXML.parse_body
-
-val is_long_identifier = forall Lexicon.is_identifier o space_explode "."
-fun maybe_quote y =
-  let val s = unyxml y in
-    y |> ((not (is_long_identifier (perhaps (try (unprefix "'")) s)) andalso
-           not (is_long_identifier (perhaps (try (unprefix "?")) s))) orelse
-           Keyword.is_keyword s) ? quote
-  end
-
-fun typ_of_dtyp _ typ_assoc (Datatype_Aux.DtTFree a) =
-    the (AList.lookup (op =) typ_assoc (Datatype_Aux.DtTFree a))
-  | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtType (s, Us)) =
-    Type (s, map (typ_of_dtyp descr typ_assoc) Us)
-  | typ_of_dtyp descr typ_assoc (Datatype_Aux.DtRec i) =
-    let val (s, ds, _) = the (AList.lookup (op =) descr i) in
-      Type (s, map (typ_of_dtyp descr typ_assoc) ds)
-    end
-
-fun varify_type ctxt T =
-  Variable.polymorphic_types ctxt [Const (@{const_name undefined}, T)]
-  |> snd |> the_single |> dest_Const |> snd
-
-(* TODO: use "Term_Subst.instantiateT" instead? *)
-fun instantiate_type thy T1 T1' T2 =
-  Same.commit (Envir.subst_type_same
-                   (Sign.typ_match thy (T1, T1') Vartab.empty)) T2
-  handle Type.TYPE_MATCH => raise TYPE ("instantiate_type", [T1, T1'], [])
-
-fun varify_and_instantiate_type ctxt T1 T1' T2 =
-  let val thy = Proof_Context.theory_of ctxt in
-    instantiate_type thy (varify_type ctxt T1) T1' (varify_type ctxt T2)
-  end
-
-fun datatype_constrs thy (T as Type (s, Ts)) =
-    (case Datatype.get_info thy s of
-       SOME {index, descr, ...} =>
-       let val (_, dtyps, constrs) = AList.lookup (op =) descr index |> the in
-         map (apsnd (fn Us => map (typ_of_dtyp descr (dtyps ~~ Ts)) Us ---> T))
-             constrs
-       end
-     | NONE => [])
-  | datatype_constrs _ _ = []
-
-(* Similar to "Nitpick_HOL.bounded_exact_card_of_type".
-   0 means infinite type, 1 means singleton type (e.g., "unit"), and 2 means
-   cardinality 2 or more. The specified default cardinality is returned if the
-   cardinality of the type can't be determined. *)
-fun tiny_card_of_type ctxt default_card assigns T =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    val max = 2 (* 1 would be too small for the "fun" case *)
-    fun aux slack avoid T =
-      if member (op =) avoid T then
-        0
-      else case AList.lookup (Sign.typ_instance thy o swap) assigns T of
-        SOME k => k
-      | NONE =>
-        case T of
-          Type (@{type_name fun}, [T1, T2]) =>
-          (case (aux slack avoid T1, aux slack avoid T2) of
-             (k, 1) => if slack andalso k = 0 then 0 else 1
-           | (0, _) => 0
-           | (_, 0) => 0
-           | (k1, k2) =>
-             if k1 >= max orelse k2 >= max then max
-             else Int.min (max, Integer.pow k2 k1))
-        | @{typ prop} => 2
-        | @{typ bool} => 2 (* optimization *)
-        | @{typ nat} => 0 (* optimization *)
-        | @{typ int} => 0 (* optimization *)
-        | Type (s, _) =>
-          (case datatype_constrs thy T of
-             constrs as _ :: _ =>
-             let
-               val constr_cards =
-                 map (Integer.prod o map (aux slack (T :: avoid)) o binder_types
-                      o snd) constrs
-             in
-               if exists (curry (op =) 0) constr_cards then 0
-               else Int.min (max, Integer.sum constr_cards)
-             end
-           | [] =>
-             case Typedef.get_info ctxt s of
-               ({abs_type, rep_type, ...}, _) :: _ =>
-               (* We cheat here by assuming that typedef types are infinite if
-                  their underlying type is infinite. This is unsound in general
-                  but it's hard to think of a realistic example where this would
-                  not be the case. We are also slack with representation types:
-                  If a representation type has the form "sigma => tau", we
-                  consider it enough to check "sigma" for infiniteness. (Look
-                  for "slack" in this function.) *)
-               (case varify_and_instantiate_type ctxt
-                         (Logic.varifyT_global abs_type) T
-                         (Logic.varifyT_global rep_type)
-                     |> aux true avoid of
-                  0 => 0
-                | 1 => 1
-                | _ => default_card)
-             | [] => default_card)
-          (* Very slightly unsound: Type variables are assumed not to be
-             constrained to cardinality 1. (In practice, the user would most
-             likely have used "unit" directly anyway.) *)
-        | TFree _ => if default_card = 1 then 2 else default_card
-          (* Schematic type variables that contain only unproblematic sorts
-             (with no finiteness axiom) can safely be considered infinite. *)
-        | TVar _ => default_card
-  in Int.min (max, aux false [] T) end
-
-fun is_type_surely_finite ctxt T = tiny_card_of_type ctxt 0 [] T <> 0
-fun is_type_surely_infinite ctxt infinite_Ts T =
-  tiny_card_of_type ctxt 1 (map (rpair 0) infinite_Ts) T = 0
-
-fun monomorphic_term subst t =
-  map_types (map_type_tvar (fn v =>
-      case Type.lookup subst v of
-        SOME typ => typ
-      | NONE => raise TERM ("monomorphic_term: uninstanitated schematic type \
-                            \variable", [t]))) t
-
-fun eta_expand _ t 0 = t
-  | eta_expand Ts (Abs (s, T, t')) n =
-    Abs (s, T, eta_expand (T :: Ts) t' (n - 1))
-  | eta_expand Ts t n =
-    fold_rev (fn T => fn t' => Abs ("x" ^ nat_subscript n, T, t'))
-             (List.take (binder_types (fastype_of1 (Ts, t)), n))
-             (list_comb (incr_boundvars n t, map Bound (n - 1 downto 0)))
-
-(* Converts an elim-rule into an equivalent theorem that does not have the
-   predicate variable. Leaves other theorems unchanged. We simply instantiate
-   the conclusion variable to False. (Cf. "transform_elim_theorem" in
-   "Meson_Clausify".) *)
-fun transform_elim_prop t =
-  case Logic.strip_imp_concl t of
-    @{const Trueprop} $ Var (z, @{typ bool}) =>
-    subst_Vars [(z, @{const False})] t
-  | Var (z, @{typ prop}) => subst_Vars [(z, @{prop False})] t
-  | _ => t
-
-fun specialize_type thy (s, T) t =
-  let
-    fun subst_for (Const (s', T')) =
-      if s = s' then
-        SOME (Sign.typ_match thy (T', T) Vartab.empty)
-        handle Type.TYPE_MATCH => NONE
-      else
-        NONE
-    | subst_for (t1 $ t2) =
-      (case subst_for t1 of SOME x => SOME x | NONE => subst_for t2)
-    | subst_for (Abs (_, _, t')) = subst_for t'
-    | subst_for _ = NONE
-  in
-    case subst_for t of
-      SOME subst => monomorphic_term subst t
-    | NONE => raise Type.TYPE_MATCH
-  end
-
 val subgoal_count = Try.subgoal_count
 
-fun strip_subgoal ctxt goal i =
-  let
-    val (t, (frees, params)) =
-      Logic.goal_params (prop_of goal) i
-      ||> (map dest_Free #> Variable.variant_frees ctxt [] #> `(map Free))
-    val hyp_ts = t |> Logic.strip_assums_hyp |> map (curry subst_bounds frees)
-    val concl_t = t |> Logic.strip_assums_concl |> curry subst_bounds frees
-  in (rev params, hyp_ts, concl_t) end
-
 val normalize_chained_theorems =
   maps (fn th => insert Thm.eq_thm_prop (zero_var_indexes th) [th])
 fun reserved_isar_keyword_table () =