src/ZF/ex/primrec0.ML
changeset 16 0b033d50ca1c
child 29 4ec9b266ccd1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/primrec0.ML	Thu Sep 30 10:54:01 1993 +0100
@@ -0,0 +1,414 @@
+(*  Title: 	ZF/ex/primrec
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Primitive Recursive Functions
+
+Proof adopted from
+Nora Szasz, 
+A Machine Checked Proof that Ackermann's Function is not Primitive Recursive,
+In: Huet & Plotkin, eds., Logical Environments (CUP, 1993), 317-338.
+*)
+
+open Primrec0;
+
+val pr0_typechecks = 
+    nat_typechecks @ List.intrs @ 
+    [lam_type, list_case_type, drop_type, map_type, apply_type, rec_type];
+
+(** Useful special cases of evaluation ***)
+
+val pr0_ss = arith_ss 
+    addsimps List.case_eqns
+    addsimps [list_rec_Nil, list_rec_Cons, 
+	      drop_0, drop_Nil, drop_succ_Cons,
+	      map_Nil, map_Cons]
+    setsolver (type_auto_tac pr0_typechecks);
+
+goalw Primrec0.thy [SC_def]
+    "!!x l. [| x:nat;  l: list(nat) |] ==> SC ` (Cons(x,l)) = succ(x)";
+by (asm_simp_tac pr0_ss 1);
+val SC = result();
+
+goalw Primrec0.thy [CONST_def]
+    "!!l. [| l: list(nat) |] ==> CONST(k) ` l = k";
+by (asm_simp_tac pr0_ss 1);
+val CONST = result();
+
+goalw Primrec0.thy [PROJ_def]
+    "!!l. [| x: nat;  l: list(nat) |] ==> PROJ(0) ` (Cons(x,l)) = x";
+by (asm_simp_tac pr0_ss 1);
+val PROJ_0 = result();
+
+goalw Primrec0.thy [COMP_def]
+    "!!l. [| l: list(nat) |] ==> COMP(g,[f]) ` l = g` [f`l]";
+by (asm_simp_tac pr0_ss 1);
+val COMP_1 = result();
+
+goalw Primrec0.thy [PREC_def]
+    "!!l. l: list(nat) ==> PREC(f,g) ` (Cons(0,l)) = f`l";
+by (asm_simp_tac pr0_ss 1);
+val PREC_0 = result();
+
+goalw Primrec0.thy [PREC_def]
+    "!!l. [| x:nat;  l: list(nat) |] ==>  \
+\         PREC(f,g) ` (Cons(succ(x),l)) = \
+\         g ` Cons(PREC(f,g)`(Cons(x,l)), Cons(x,l))";
+by (asm_simp_tac pr0_ss 1);
+val PREC_succ = result();
+
+(*** Inductive definition of the PR functions ***)
+
+structure Primrec = Inductive_Fun
+ (val thy = Primrec0.thy;
+  val rec_doms = [("primrec", "list(nat)->nat")];
+  val ext = None
+  val sintrs = 
+      ["SC : primrec",
+       "k: nat ==> CONST(k) : primrec",
+       "i: nat ==> PROJ(i) : primrec",
+       "[| g: primrec;  fs: list(primrec) |] ==> COMP(g,fs): primrec",
+       "[| f: primrec;  g: primrec |] ==> PREC(f,g): primrec"];
+  val monos = [list_mono];
+  val con_defs = [SC_def,CONST_def,PROJ_def,COMP_def,PREC_def];
+  val type_intrs = pr0_typechecks
+  val type_elims = []);
+
+(* c: primrec ==> c: list(nat) -> nat *)
+val primrec_into_fun = Primrec.dom_subset RS subsetD;
+
+val pr_ss = pr0_ss 
+    setsolver (type_auto_tac ([primrec_into_fun] @ 
+			      pr0_typechecks @ Primrec.intrs));
+
+goalw Primrec.thy [ACK_def] "!!i. i:nat ==> ACK(i): primrec";
+by (etac nat_induct 1);
+by (ALLGOALS (asm_simp_tac pr_ss));
+val ACK_in_primrec = result();
+
+val ack_typechecks =
+    [ACK_in_primrec, primrec_into_fun RS apply_type,
+     add_type, list_add_type, naturals_are_ordinals] @ 
+    nat_typechecks @ List.intrs @ Primrec.intrs;
+
+(*strict typechecking for the Ackermann proof; instantiates no vars*)
+fun tc_tac rls =
+    REPEAT
+      (SOMEGOAL (test_assume_tac ORELSE' match_tac (rls @ ack_typechecks)));
+
+goal Primrec.thy "!!i j. [| i:nat;  j:nat |] ==>  ack(i,j): nat";
+by (tc_tac []);
+val ack_type = result();
+
+(** Ackermann's function cases **)
+
+(*PROPERTY A 1*)
+goalw Primrec0.thy [ACK_def] "!!j. j:nat ==> ack(0,j) = succ(j)";
+by (asm_simp_tac (pr0_ss addsimps [SC]) 1);
+val ack_0 = result();
+
+(*PROPERTY A 2*)
+goalw Primrec0.thy [ACK_def] "ack(succ(i), 0) = ack(i,1)";
+by (asm_simp_tac (pr0_ss addsimps [CONST,PREC_0]) 1);
+val ack_succ_0 = result();
+
+(*PROPERTY A 3*)
+(*Could be proved in Primrec0, like the previous two cases, but using
+  primrec_into_fun makes type-checking easier!*)
+goalw Primrec.thy [ACK_def]
+    "!!i j. [| i:nat;  j:nat |] ==> \
+\           ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))";
+by (asm_simp_tac (pr_ss addsimps [CONST,PREC_succ,COMP_1,PROJ_0]) 1);
+val ack_succ_succ = result();
+
+val ack_ss = 
+    pr_ss addsimps [ack_0, ack_succ_0, ack_succ_succ, 
+		    ack_type, naturals_are_ordinals];
+
+(*PROPERTY A 4*)
+goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j : ack(i,j)";
+by (etac nat_induct 1);
+by (asm_simp_tac ack_ss 1);
+by (rtac ballI 1);
+by (eres_inst_tac [("n","j")] nat_induct 1);
+by (ALLGOALS (asm_simp_tac ack_ss));
+by (rtac ([succI1, asm_rl,naturals_are_ordinals] MRS Ord_trans) 1);
+by (rtac (succ_mem_succI RS Ord_trans1) 3);
+by (etac bspec 5);
+by (ALLGOALS (asm_simp_tac ack_ss));
+val less_ack2_lemma = result();
+val less_ack2 = standard (less_ack2_lemma RS bspec);
+
+(*PROPERTY A 5-, the single-step lemma*)
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(i, succ(j))";
+by (etac nat_induct 1);
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [less_ack2])));
+val ack_less_ack_succ2 = result();
+
+(*PROPERTY A 5, monotonicity for < *)
+goal Primrec.thy "!!i j k. [| j:k; i:nat; k:nat |] ==> ack(i,j) : ack(i,k)";
+by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
+by (assume_tac 1);
+by (etac succ_less_induct 1);
+by (assume_tac 1);
+by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
+by (REPEAT (ares_tac ([ack_less_ack_succ2, ack_type] @ pr0_typechecks) 1));
+val ack_less_mono2 = result();
+
+(*PROPERTY A 5', monotonicity for <= *)
+goal Primrec.thy
+    "!!i j k. [| j<=k; i:nat; j:nat; k:nat |] ==> ack(i,j) <= ack(i,k)";
+by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_less_mono_imp_mono 1);
+by (REPEAT (ares_tac [ack_less_mono2, ack_type, Ord_nat] 1));
+val ack_mono2 = result();
+
+(*PROPERTY A 6*)
+goal Primrec.thy
+    "!!i j. [| i:nat;  j:nat |] ==> ack(i, succ(j)) <= ack(succ(i), j)";
+by (nat_ind_tac "j" [] 1);
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [subset_refl])));
+by (rtac ack_mono2 1);
+by (rtac (less_ack2 RS Ord_succ_subsetI RS subset_trans) 1);
+by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type] @ pr0_typechecks) 1));
+val ack2_leq_ack1 = result();
+
+(*PROPERTY A 7-, the single-step lemma*)
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(succ(i),j)";
+by (rtac (ack_less_mono2 RS Ord_trans2) 1);
+by (rtac (ack2_leq_ack1 RS member_succI) 4);
+by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type, succI1] @ 
+		      pr0_typechecks) 1));
+val ack_less_ack_succ1 = result();
+
+(*PROPERTY A 7, monotonicity for < *)
+goal Primrec.thy "!!i j k. [| i:j; j:nat; k:nat |] ==> ack(i,k) : ack(j,k)";
+by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
+by (assume_tac 1);
+by (etac succ_less_induct 1);
+by (assume_tac 1);
+by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
+by (REPEAT (ares_tac ([ack_less_ack_succ1, ack_type] @ pr0_typechecks) 1));
+val ack_less_mono1 = result();
+
+(*PROPERTY A 7', monotonicity for <= *)
+goal Primrec.thy
+    "!!i j k. [| i<=j; i:nat; j:nat; k:nat |] ==> ack(i,k) <= ack(j,k)";
+by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_less_mono_imp_mono 1);
+by (REPEAT (ares_tac [ack_less_mono1, ack_type, Ord_nat] 1));
+val ack_mono1 = result();
+
+(*PROPERTY A 8*)
+goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))";
+by (etac nat_induct 1);
+by (ALLGOALS (asm_simp_tac ack_ss));
+val ack_1 = result();
+
+(*PROPERTY A 9*)
+goal Primrec.thy "!!j. j:nat ==> ack(succ(1),j) = succ(succ(succ(j#+j)))";
+by (etac nat_induct 1);
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [ack_1, add_succ_right])));
+val ack_2 = result();
+
+(*PROPERTY A 10*)
+goal Primrec.thy
+    "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
+\               ack(i1, ack(i2,j)) : ack(succ(succ(i1#+i2)), j)";
+by (rtac Ord_trans2 1);
+by (rtac (ack2_leq_ack1 RS member_succI) 2);
+by (asm_simp_tac ack_ss 1);
+by (rtac ([ack_mono1 RS member_succI, ack_less_mono2] MRS Ord_trans1) 1);
+by (rtac add_leq_self 1);
+by (tc_tac []);
+by (rtac (add_commute RS ssubst) 1);
+by (rtac (add_less_succ_self RS ack_less_mono1) 3);
+by (tc_tac []);
+val ack_nest_bound = result();
+
+(*PROPERTY A 11*)
+goal Primrec.thy
+    "!!i1 i2. [| i1:nat; i2:nat |] ==> \
+\             EX k:nat. ALL j:nat. ack(i1,j) #+ ack(i2,j) : ack(k,j)";
+by (rtac (Ord_trans RS ballI RS bexI) 1);
+by (res_inst_tac [("i1.0", "succ(1)"), ("i2.0", "i1#+i2")] ack_nest_bound 2);
+by (rtac (ack_2 RS ssubst) 1);
+by (tc_tac []);
+by (rtac (member_succI RS succI2 RS succI2) 1);
+by (rtac (add_leq_self RS ack_mono1 RS add_mono) 1);
+by (tc_tac []);
+by (rtac (add_commute RS ssubst) 1);
+by (rtac (add_leq_self RS ack_mono1) 3);
+by (tc_tac []);
+val ack_add_bound = result();
+
+(*PROPERTY A 12 -- note quantifier nesting
+  Article uses existential quantifier but the ALF proof used a concrete
+  expression, namely k#+4. *)
+goal Primrec.thy
+    "!!k. k: nat ==> \
+\         EX k':nat. ALL i:nat. ALL j:nat. i : ack(k,j) --> i#+j : ack(k',j)";
+by (res_inst_tac [("i1.1", "k"), ("i2.1", "0")] (ack_add_bound RS bexE) 1);
+by (rtac (Ord_trans RS impI RS ballI RS ballI RS bexI) 3);
+by (etac bspec 4);
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [add_less_mono])));
+val ack_add_bound2 = result();
+
+(*** MAIN RESULT ***)
+
+val ack2_ss =
+    ack_ss addsimps [list_add_Nil, list_add_Cons, list_add_type, 
+		     naturals_are_ordinals];
+
+goalw Primrec.thy [SC_def]
+    "!!l. l: list(nat) ==> SC ` l : ack(1, list_add(l))";
+by (etac List.elim 1);
+by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1);
+by (asm_simp_tac (ack2_ss addsimps 
+		  [ack_1, add_less_succ_self RS succ_mem_succI]) 1);
+val SC_case = result();
+
+(*PROPERTY A 4'?? Extra lemma needed for CONST case, constant functions*)
+goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i : ack(i,j)";
+by (etac nat_induct 1);
+by (asm_simp_tac (ack_ss addsimps [nat_0_in_succ]) 1);
+by (etac ([succ_mem_succI, ack_less_ack_succ1] MRS Ord_trans1) 1);
+by (tc_tac []);
+val less_ack1 = result();
+
+goalw Primrec.thy [CONST_def]
+    "!!l. [| l: list(nat);  k: nat |] ==> CONST(k) ` l : ack(k, list_add(l))";
+by (asm_simp_tac (ack2_ss addsimps [less_ack1]) 1);
+val CONST_case = result();
+
+goalw Primrec.thy [PROJ_def]
+    "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l : ack(0, list_add(l))";
+by (asm_simp_tac ack2_ss 1);
+by (etac List.induct 1);
+by (asm_simp_tac (ack2_ss addsimps [nat_0_in_succ]) 1);
+by (asm_simp_tac ack2_ss 1);
+by (rtac ballI 1);
+by (eres_inst_tac [("n","x")] natE 1);
+by (asm_simp_tac (ack2_ss addsimps [add_less_succ_self]) 1);
+by (asm_simp_tac ack2_ss 1);
+by (etac (bspec RS Ord_trans2) 1);
+by (assume_tac 1);
+by (rtac (add_commute RS ssubst) 1);
+by (rtac (add_less_succ_self RS succ_mem_succI) 3);
+by (tc_tac [list_add_type]);
+val PROJ_case_lemma = result();
+val PROJ_case = PROJ_case_lemma RS bspec;
+
+(** COMP case **)
+
+goal Primrec.thy
+ "!!fs. fs : list({f: primrec .					\
+\              	   EX kf:nat. ALL l:list(nat). 			\
+\		    	      f`l : ack(kf, list_add(l))})	\
+\      ==> EX k:nat. ALL l: list(nat). 				\
+\                list_add(map(%f. f ` l, fs)) : ack(k, list_add(l))";
+by (etac List.induct 1);
+by (DO_GOAL [res_inst_tac [("x","0")] bexI,
+	     asm_simp_tac (ack2_ss addsimps [less_ack1,nat_0_in_succ]),
+	     resolve_tac nat_typechecks] 1);
+by (safe_tac ZF_cs);
+by (asm_simp_tac ack2_ss 1);
+by (res_inst_tac [("i1.1", "kf"), ("i2.1", "k")] (ack_add_bound RS bexE) 1
+    THEN REPEAT (assume_tac 1));
+by (rtac (ballI RS bexI) 1);
+by (etac (bspec RS add_less_mono RS Ord_trans) 1);
+by (REPEAT (FIRSTGOAL (etac bspec)));
+by (tc_tac [list_add_type]);
+val COMP_map_lemma = result();
+
+goalw Primrec.thy [COMP_def]
+ "!!g. [| g: primrec;  kg: nat;					\
+\         ALL l:list(nat). g`l : ack(kg, list_add(l));		\
+\         fs : list({f: primrec .				\
+\                    EX kf:nat. ALL l:list(nat). 		\
+\		    	f`l : ack(kf, list_add(l))}) 		\
+\      |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l : ack(k, list_add(l))";
+by (asm_simp_tac ZF_ss 1);
+by (forward_tac [list_CollectD] 1);
+by (etac (COMP_map_lemma RS bexE) 1);
+by (rtac (ballI RS bexI) 1);
+by (etac (bspec RS Ord_trans) 1);
+by (rtac Ord_trans 2);
+by (rtac ack_nest_bound 3);
+by (etac (bspec RS ack_less_mono2) 2);
+by (tc_tac [map_type]);
+val COMP_case = result();
+
+(** PREC case **)
+
+goalw Primrec.thy [PREC_def]
+ "!!f g. [| f: primrec;  kf: nat;					\
+\           g: primrec;  kg: nat;					\
+\           ALL l:list(nat). f`l #+ list_add(l) : ack(kf, list_add(l));	\
+\           ALL l:list(nat). g`l #+ list_add(l) : ack(kg, list_add(l));	\
+\           l: list(nat)						\
+\        |] ==> PREC(f,g)`l #+ list_add(l) : ack(succ(kf#+kg), list_add(l))";
+by (etac List.elim 1);
+by (asm_simp_tac (ack2_ss addsimps [[succI1, less_ack2] MRS Ord_trans]) 1);
+by (asm_simp_tac ack2_ss 1);
+be ssubst 1;  (*get rid of the needless assumption*)
+by (eres_inst_tac [("n","a")] nat_induct 1);
+by (asm_simp_tac ack2_ss 1);
+by (rtac Ord_trans 1);
+by (etac bspec 1);
+by (assume_tac 1);
+by (rtac ack_less_mono1 1);
+by (rtac add_less_succ_self 1);
+by (tc_tac [list_add_type]);
+(*ind step -- level 13*)
+by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1);
+by (rtac (succ_mem_succI RS Ord_trans1) 1);
+by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] Ord_trans1 1);
+by (etac bspec 2);
+by (rtac (subset_refl RS add_mono RS member_succI) 1);
+by (tc_tac []);
+by (asm_simp_tac (ack2_ss addsimps [add_leq_self2]) 1);
+by (asm_simp_tac ack2_ss 1);
+(*final part of the simplification*)
+by (rtac (member_succI RS Ord_trans1) 1);
+by (rtac (add_leq_self2 RS ack_mono1) 1);
+by (etac ack_less_mono2 8);
+by (tc_tac []);
+val PREC_case_lemma = result();
+
+goal Primrec.thy
+ "!!f g. [| f: primrec;  kf: nat;				\
+\           g: primrec;  kg: nat;				\
+\           ALL l:list(nat). f`l : ack(kf, list_add(l));	\
+\           ALL l:list(nat). g`l : ack(kg, list_add(l)) 	\
+\        |] ==> EX k:nat. ALL l: list(nat). 			\
+\		    PREC(f,g)`l: ack(k, list_add(l))";
+by (etac (ack_add_bound2 RS bexE) 1);
+by (etac (ack_add_bound2 RS bexE) 1);
+by (rtac (ballI RS bexI) 1);
+by (rtac ([add_leq_self RS member_succI, PREC_case_lemma] MRS Ord_trans1) 1);
+by (DEPTH_SOLVE
+    (SOMEGOAL
+     (FIRST' [test_assume_tac,
+	      match_tac (ballI::ack_typechecks),
+	      eresolve_tac [bspec, bspec RS bspec RS mp]])));
+val PREC_case = result();
+
+goal Primrec.thy
+    "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l : ack(k, list_add(l))";
+by (etac Primrec.induct 1);
+by (safe_tac ZF_cs);
+by (DEPTH_SOLVE
+    (ares_tac ([SC_case, CONST_case, PROJ_case, COMP_case, PREC_case,
+		       bexI, ballI] @ nat_typechecks) 1));
+val ack_bounds_primrec = result();
+
+goal Primrec.thy
+    "~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec";
+by (rtac notI 1);
+by (etac (ack_bounds_primrec RS bexE) 1);
+by (rtac mem_anti_refl 1);
+by (dres_inst_tac [("x", "[x]")] bspec 1);
+by (asm_simp_tac ack2_ss 1);
+by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1);
+val ack_not_primrec = result();
+