src/HOLCF/Lift.thy
changeset 12026 0b1d80ada4ab
parent 2640 ee4dfce170a0
child 12338 de0f4a63baa5
--- a/src/HOLCF/Lift.thy	Sat Nov 03 01:36:19 2001 +0100
+++ b/src/HOLCF/Lift.thy	Sat Nov 03 01:38:11 2001 +0100
@@ -1,16 +1,339 @@
 (*  Title:      HOLCF/Lift.thy
     ID:         $Id$
-    Author:     Oscar Slotosch
-    Copyright   1997 Technische Universitaet Muenchen
+    Author:     Olaf Mueller
+    License:    GPL (GNU GENERAL PUBLIC LICENSE)
 *)
 
-Lift = Lift3 + 
+header {* Lifting types of class term to flat pcpo's *}
+
+theory Lift = Cprod3:
+
+defaultsort "term"
+
+
+typedef 'a lift = "UNIV :: 'a option set" ..
+
+constdefs
+  Undef :: "'a lift"
+  "Undef == Abs_lift None"
+  Def :: "'a => 'a lift"
+  "Def x == Abs_lift (Some x)"
+
+instance lift :: ("term") sq_ord ..
+
+defs (overloaded)
+  less_lift_def: "x << y == (x=y | x=Undef)"
+
+instance lift :: ("term") po
+proof
+  fix x y z :: "'a lift"
+  show "x << x" by (unfold less_lift_def) blast
+  { assume "x << y" and "y << x" thus "x = y" by (unfold less_lift_def) blast }
+  { assume "x << y" and "y << z" thus "x << z" by (unfold less_lift_def) blast }
+qed
+
+lemma inst_lift_po: "(op <<) = (\<lambda>x y. x = y | x = Undef)"
+  -- {* For compatibility with old HOLCF-Version. *}
+  by (simp only: less_lift_def [symmetric])
+
+
+subsection {* Type lift is pointed *}
+
+lemma minimal_lift [iff]: "Undef << x"
+  by (simp add: inst_lift_po)
+
+lemma UU_lift_def: "(SOME u. \<forall>y. u \<sqsubseteq> y) = Undef"
+  apply (rule minimal2UU [symmetric])
+  apply (rule minimal_lift)
+  done
+
+lemma least_lift: "EX x::'a lift. ALL y. x << y"
+  apply (rule_tac x = Undef in exI)
+  apply (rule minimal_lift [THEN allI])
+  done
+
+
+subsection {* Type lift is a cpo *}
+
+text {*
+  The following lemmas have already been proved in @{text Pcpo.ML} and
+  @{text Fix.ML}, but there class @{text pcpo} is assumed, although
+  only @{text po} is necessary and a least element. Therefore they are
+  redone here for the @{text po} lift with least element @{text
+  Undef}.
+*}
+
+lemma notUndef_I: "[| x<<y; x ~= Undef |] ==> y ~= Undef"
+  -- {* Tailoring @{text notUU_I} of @{text Pcpo.ML} to @{text Undef} *}
+  by (blast intro: antisym_less)
+
+lemma chain_mono2_po: "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |]
+         ==> EX j. ALL i. j<i-->~Y(i)=Undef"
+  -- {* Tailoring @{text chain_mono2} of @{text Pcpo.ML} to @{text Undef} *}
+  apply safe
+  apply (rule exI)
+  apply (intro strip)
+  apply (rule notUndef_I)
+   apply (erule (1) chain_mono)
+  apply assumption
+  done
+
+lemma flat_imp_chfin_poo: "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))"
+  -- {* Tailoring @{text flat_imp_chfin} of @{text Fix.ML} to @{text lift} *}
+  apply (unfold max_in_chain_def)
+  apply (intro strip)
+  apply (rule_tac P = "ALL i. Y (i) = Undef" in case_split)
+   apply (rule_tac x = 0 in exI)
+   apply (intro strip)
+   apply (rule trans)
+    apply (erule spec)
+   apply (rule sym)
+   apply (erule spec)
+  apply (subgoal_tac "ALL x y. x << (y:: ('a) lift) --> x=Undef | x=y")
+   prefer 2 apply (simp add: inst_lift_po)
+  apply (rule chain_mono2_po [THEN exE])
+    apply fast
+   apply assumption
+  apply (rule_tac x = "Suc x" in exI)
+  apply (intro strip)
+  apply (rule disjE)
+    prefer 3 apply assumption
+   apply (rule mp)
+    apply (drule spec)
+    apply (erule spec)
+   apply (erule le_imp_less_or_eq [THEN disjE])
+    apply (erule chain_mono)
+    apply auto
+  done
+
+theorem cpo_lift: "chain (Y::nat => 'a lift) ==> EX x. range Y <<| x"
+  apply (cut_tac flat_imp_chfin_poo)
+  apply (blast intro: lub_finch1)
+  done
+
+instance lift :: ("term") pcpo
+  apply intro_classes
+   apply (erule cpo_lift)
+  apply (rule least_lift)
+  done
+
+lemma inst_lift_pcpo: "UU = Undef"
+  -- {* For compatibility with old HOLCF-Version. *}
+  by (simp add: UU_def UU_lift_def)
+
+
+subsection {* Lift as a datatype *}
+
+lemma lift_distinct1: "UU ~= Def x"
+  by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
+
+lemma lift_distinct2: "Def x ~= UU"
+  by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
+
+lemma Def_inject: "(Def x = Def x') = (x = x')"
+  by (simp add: Def_def Abs_lift_inject lift_def)
+
+lemma lift_induct: "P UU ==> (!!x. P (Def x)) ==> P y"
+  apply (induct y)
+  apply (induct_tac y)
+   apply (simp_all add: Undef_def Def_def inst_lift_pcpo)
+  done
+
+rep_datatype lift
+  distinct lift_distinct1 lift_distinct2
+  inject Def_inject
+  induction lift_induct
+
+lemma Def_not_UU: "Def a ~= UU"
+  by simp
+
+
+subsection {* Further operations *}
+
+consts
+ flift1      :: "('a => 'b::pcpo) => ('a lift -> 'b)"
+ flift2      :: "('a => 'b)       => ('a lift -> 'b lift)"
+ liftpair    ::"'a::term lift * 'b::term lift => ('a * 'b) lift"
 
-instance lift :: (term)flat (ax_flat_lift)
+defs
+ flift1_def:
+  "flift1 f == (LAM x. (case x of
+                   UU => UU
+                 | Def y => (f y)))"
+ flift2_def:
+  "flift2 f == (LAM x. (case x of
+                   UU => UU
+                 | Def y => Def (f y)))"
+ liftpair_def:
+  "liftpair x  == (case (cfst$x) of
+                  UU  => UU
+                | Def x1 => (case (csnd$x) of
+                               UU => UU
+                             | Def x2 => Def (x1,x2)))"
+
+
+declare inst_lift_pcpo [symmetric, simp]
+
+
+lemma less_lift: "(x::'a lift) << y = (x=y | x=UU)"
+  by (simp add: inst_lift_po)
+
+
+text {* @{text UU} and @{text Def} *}
+
+lemma Lift_exhaust: "x = UU | (EX y. x = Def y)"
+  by (induct x) simp_all
+
+lemma Lift_cases: "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P"
+  by (insert Lift_exhaust) blast
+
+lemma not_Undef_is_Def: "(x ~= UU) = (EX y. x = Def y)"
+  by (cases x) simp_all
+
+text {*
+  For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text
+  x} by @{text "Def a"} in conclusion. *}
+
+ML {*
+  local val not_Undef_is_Def = thm "not_Undef_is_Def"
+  in val def_tac = SIMPSET' (fn ss =>
+    etac (not_Undef_is_Def RS iffD1 RS exE) THEN' asm_simp_tac ss)
+  end;
+*}
+
+lemma Undef_eq_UU: "Undef = UU"
+  by (rule inst_lift_pcpo [symmetric])
+
+lemma DefE: "Def x = UU ==> R"
+  by simp
+
+lemma DefE2: "[| x = Def s; x = UU |] ==> R"
+  by simp
+
+lemma Def_inject_less_eq: "Def x << Def y = (x = y)"
+  by (simp add: less_lift_def)
+
+lemma Def_less_is_eq [simp]: "Def x << y = (Def x = y)"
+  by (simp add: less_lift)
+
+
+subsection {* Lift is flat *}
+
+instance lift :: ("term") flat
+proof
+  show "ALL x y::'a lift. x << y --> x = UU | x = y"
+    by (simp add: less_lift)
+qed
+
+defaultsort pcpo
+
+
+text {*
+  \medskip Two specific lemmas for the combination of LCF and HOL
+  terms.
+*}
+
+lemma cont_Rep_CFun_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s)"
+  apply (rule cont2cont_CF1L)
+  apply (tactic "resolve_tac cont_lemmas1 1")+
+   apply auto
+  done
+
+lemma cont_Rep_CFun_app_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s t)"
+  apply (rule cont2cont_CF1L)
+  apply (erule cont_Rep_CFun_app)
+  apply assumption
+  done
 
-default pcpo
+text {* Continuity of if-then-else. *}
+
+lemma cont_if: "[| cont f1; cont f2 |] ==> cont (%x. if b then f1 x else f2 x)"
+  by (cases b) simp_all
+
+
+subsection {* Continuity Proofs for flift1, flift2, if *}
+
+text {* Need the instance of @{text flat}. *}
+
+lemma cont_flift1_arg: "cont (lift_case UU f)"
+  -- {* @{text flift1} is continuous in its argument itself. *}
+  apply (rule flatdom_strict2cont)
+  apply simp
+  done
+
+lemma cont_flift1_not_arg: "!!f. [| !! a. cont (%y. (f y) a) |] ==>
+           cont (%y. lift_case UU (f y))"
+  -- {* @{text flift1} is continuous in a variable that occurs only
+    in the @{text Def} branch. *}
+  apply (rule cont2cont_CF1L_rev)
+  apply (intro strip)
+  apply (case_tac y)
+   apply simp
+  apply simp
+  done
+
+lemma cont_flift1_arg_and_not_arg: "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==>
+    cont (%y. lift_case UU (f y) (g y))"
+  -- {* @{text flift1} is continuous in a variable that occurs either
+    in the @{text Def} branch or in the argument. *}
+  apply (rule_tac tt = g in cont2cont_app)
+    apply (rule cont_flift1_not_arg)
+    apply auto
+  apply (rule cont_flift1_arg)
+  done
+
+lemma cont_flift2_arg: "cont (lift_case UU (%y. Def (f y)))"
+  -- {* @{text flift2} is continuous in its argument itself. *}
+  apply (rule flatdom_strict2cont)
+  apply simp
+  done
+
+text {*
+  \medskip Extension of cont_tac and installation of simplifier.
+*}
+
+lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1"
+  apply (rule cont2cont_CF1L_rev)
+  apply simp
+  done
+
+lemmas cont_lemmas_ext [simp] =
+  cont_flift1_arg cont_flift2_arg
+  cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2
+  cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
+
+ML_setup {*
+val cont_lemmas2 = cont_lemmas1 @ thms "cont_lemmas_ext";
+
+fun cont_tac  i = resolve_tac cont_lemmas2 i;
+fun cont_tacR i = REPEAT (cont_tac i);
+
+local val flift1_def = thm "flift1_def" and flift2_def = thm "flift2_def"
+in fun cont_tacRs i =
+  simp_tac (simpset() addsimps [flift1_def, flift2_def]) i THEN
+  REPEAT (cont_tac i)
+end;
+
+simpset_ref() := simpset() addSolver
+  (mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac)));
+*}
+
+
+subsection {* flift1, flift2 *}
+
+lemma flift1_Def [simp]: "flift1 f$(Def x) = (f x)"
+  by (simp add: flift1_def)
+
+lemma flift2_Def [simp]: "flift2 f$(Def x) = Def (f x)"
+  by (simp add: flift2_def)
+
+lemma flift1_UU [simp]: "flift1 f$UU = UU"
+  by (simp add: flift1_def)
+
+lemma flift2_UU [simp]: "flift2 f$UU = UU"
+  by (simp add: flift2_def)
+
+lemma flift2_nUU [simp]: "x~=UU ==> (flift2 f)$x~=UU"
+  by (tactic "def_tac 1")
 
 end
-
-
-