src/HOL/Tools/ATP/atp_reconstruct.ML
changeset 46320 0b8b73b49848
parent 46319 c248e4f1be74
child 46321 484dc68c8c89
--- a/src/HOL/Tools/ATP/atp_reconstruct.ML	Mon Jan 23 17:40:31 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,951 +0,0 @@
-(*  Title:      HOL/Tools/ATP/atp_reconstruct.ML
-    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
-    Author:     Claire Quigley, Cambridge University Computer Laboratory
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Proof reconstruction from ATP proofs.
-*)
-
-signature ATP_RECONSTRUCT =
-sig
-  type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
-  type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
-  type 'a proof = 'a ATP_Proof.proof
-  type locality = ATP_Translate.locality
-
-  datatype reconstructor =
-    Metis of string * string |
-    SMT
-
-  datatype play =
-    Played of reconstructor * Time.time |
-    Trust_Playable of reconstructor * Time.time option |
-    Failed_to_Play of reconstructor
-
-  type minimize_command = string list -> string
-  type one_line_params =
-    play * string * (string * locality) list * minimize_command * int * int
-  type isar_params =
-    bool * int * string Symtab.table * (string * locality) list vector
-    * int Symtab.table * string proof * thm
-
-  val metisN : string
-  val smtN : string
-  val full_typesN : string
-  val partial_typesN : string
-  val no_typesN : string
-  val really_full_type_enc : string
-  val full_type_enc : string
-  val partial_type_enc : string
-  val no_type_enc : string
-  val full_type_encs : string list
-  val partial_type_encs : string list
-  val metis_default_lam_trans : string
-  val metis_call : string -> string -> string
-  val string_for_reconstructor : reconstructor -> string
-  val used_facts_in_atp_proof :
-    Proof.context -> (string * locality) list vector -> string proof
-    -> (string * locality) list
-  val lam_trans_from_atp_proof : string proof -> string -> string
-  val is_typed_helper_used_in_atp_proof : string proof -> bool
-  val used_facts_in_unsound_atp_proof :
-    Proof.context -> (string * locality) list vector -> 'a proof
-    -> string list option
-  val unalias_type_enc : string -> string list
-  val one_line_proof_text : one_line_params -> string
-  val make_tvar : string -> typ
-  val make_tfree : Proof.context -> string -> typ
-  val term_from_atp :
-    Proof.context -> bool -> int Symtab.table -> typ option
-    -> (string, string) ho_term -> term
-  val prop_from_atp :
-    Proof.context -> bool -> int Symtab.table
-    -> (string, string, (string, string) ho_term) formula -> term
-  val isar_proof_text :
-    Proof.context -> bool -> isar_params -> one_line_params -> string
-  val proof_text :
-    Proof.context -> bool -> isar_params -> one_line_params -> string
-end;
-
-structure ATP_Reconstruct : ATP_RECONSTRUCT =
-struct
-
-open ATP_Util
-open ATP_Problem
-open ATP_Proof
-open ATP_Translate
-
-structure String_Redirect = ATP_Redirect(
-    type key = step_name
-    val ord = fn ((s, _ : string list), (s', _)) => fast_string_ord (s, s')
-    val string_of = fst)
-
-open String_Redirect
-
-datatype reconstructor =
-  Metis of string * string |
-  SMT
-
-datatype play =
-  Played of reconstructor * Time.time |
-  Trust_Playable of reconstructor * Time.time option |
-  Failed_to_Play of reconstructor
-
-type minimize_command = string list -> string
-type one_line_params =
-  play * string * (string * locality) list * minimize_command * int * int
-type isar_params =
-  bool * int * string Symtab.table * (string * locality) list vector
-  * int Symtab.table * string proof * thm
-
-val metisN = "metis"
-val smtN = "smt"
-
-val full_typesN = "full_types"
-val partial_typesN = "partial_types"
-val no_typesN = "no_types"
-
-val really_full_type_enc = "mono_tags"
-val full_type_enc = "poly_guards_query"
-val partial_type_enc = "poly_args"
-val no_type_enc = "erased"
-
-val full_type_encs = [full_type_enc, really_full_type_enc]
-val partial_type_encs = partial_type_enc :: full_type_encs
-
-val type_enc_aliases =
-  [(full_typesN, full_type_encs),
-   (partial_typesN, partial_type_encs),
-   (no_typesN, [no_type_enc])]
-
-fun unalias_type_enc s =
-  AList.lookup (op =) type_enc_aliases s |> the_default [s]
-
-val metis_default_lam_trans = combinatorsN
-
-fun metis_call type_enc lam_trans =
-  let
-    val type_enc =
-      case AList.find (fn (enc, encs) => enc = hd encs) type_enc_aliases
-                      type_enc of
-        [alias] => alias
-      | _ => type_enc
-    val opts = [] |> type_enc <> partial_typesN ? cons type_enc
-                  |> lam_trans <> metis_default_lam_trans ? cons lam_trans
-  in metisN ^ (if null opts then "" else " (" ^ commas opts ^ ")") end
-
-fun string_for_reconstructor (Metis (type_enc, lam_trans)) =
-    metis_call type_enc lam_trans
-  | string_for_reconstructor SMT = smtN
-
-fun find_first_in_list_vector vec key =
-  Vector.foldl (fn (ps, NONE) => AList.lookup (op =) ps key
-                 | (_, value) => value) NONE vec
-
-val unprefix_fact_number = space_implode "_" o tl o space_explode "_"
-
-fun resolve_one_named_fact fact_names s =
-  case try (unprefix fact_prefix) s of
-    SOME s' =>
-    let val s' = s' |> unprefix_fact_number |> unascii_of in
-      s' |> find_first_in_list_vector fact_names |> Option.map (pair s')
-    end
-  | NONE => NONE
-fun resolve_fact fact_names = map_filter (resolve_one_named_fact fact_names)
-fun is_fact fact_names = not o null o resolve_fact fact_names
-
-fun resolve_one_named_conjecture s =
-  case try (unprefix conjecture_prefix) s of
-    SOME s' => Int.fromString s'
-  | NONE => NONE
-
-val resolve_conjecture = map_filter resolve_one_named_conjecture
-val is_conjecture = not o null o resolve_conjecture
-
-fun is_axiom_used_in_proof pred =
-  exists (fn Inference ((_, ss), _, _, []) => exists pred ss | _ => false)
-
-val is_combinator_def = String.isPrefix (helper_prefix ^ combinator_prefix)
-
-val ascii_of_lam_fact_prefix = ascii_of lam_fact_prefix
-
-(* overapproximation (good enough) *)
-fun is_lam_lifted s =
-  String.isPrefix fact_prefix s andalso
-  String.isSubstring ascii_of_lam_fact_prefix s
-
-fun lam_trans_from_atp_proof atp_proof default =
-  if is_axiom_used_in_proof is_combinator_def atp_proof then combinatorsN
-  else if is_axiom_used_in_proof is_lam_lifted atp_proof then lam_liftingN
-  else default
-
-val is_typed_helper_name =
-  String.isPrefix helper_prefix andf String.isSuffix typed_helper_suffix
-fun is_typed_helper_used_in_atp_proof atp_proof =
-  is_axiom_used_in_proof is_typed_helper_name atp_proof
-
-val leo2_ext = "extcnf_equal_neg"
-val isa_ext = Thm.get_name_hint @{thm ext}
-val isa_short_ext = Long_Name.base_name isa_ext
-
-fun ext_name ctxt =
-  if Thm.eq_thm_prop (@{thm ext},
-         singleton (Attrib.eval_thms ctxt) (Facts.named isa_short_ext, [])) then
-    isa_short_ext
-  else
-    isa_ext
-
-fun add_fact _ fact_names (Inference ((_, ss), _, _, [])) =
-    union (op =) (resolve_fact fact_names ss)
-  | add_fact ctxt _ (Inference (_, _, rule, _)) =
-    if rule = leo2_ext then insert (op =) (ext_name ctxt, General) else I
-  | add_fact _ _ _ = I
-
-fun used_facts_in_atp_proof ctxt fact_names atp_proof =
-  if null atp_proof then Vector.foldl (uncurry (union (op =))) [] fact_names
-  else fold (add_fact ctxt fact_names) atp_proof []
-
-(* (quasi-)underapproximation of the truth *)
-fun is_locality_global Local = false
-  | is_locality_global Assum = false
-  | is_locality_global Chained = false
-  | is_locality_global _ = true
-
-fun used_facts_in_unsound_atp_proof _ _ [] = NONE
-  | used_facts_in_unsound_atp_proof ctxt fact_names atp_proof =
-    let
-      val used_facts = used_facts_in_atp_proof ctxt fact_names atp_proof
-    in
-      if forall (is_locality_global o snd) used_facts andalso
-         not (is_axiom_used_in_proof (is_conjecture o single) atp_proof) then
-        SOME (map fst used_facts)
-      else
-        NONE
-    end
-
-
-(** Soft-core proof reconstruction: one-liners **)
-
-fun string_for_label (s, num) = s ^ string_of_int num
-
-fun show_time NONE = ""
-  | show_time (SOME ext_time) = " (" ^ string_from_ext_time ext_time ^ ")"
-
-fun apply_on_subgoal _ 1 = "by "
-  | apply_on_subgoal 1 _ = "apply "
-  | apply_on_subgoal i n =
-    "prefer " ^ string_of_int i ^ " " ^ apply_on_subgoal 1 n
-fun command_call name [] =
-    name |> not (Lexicon.is_identifier name) ? enclose "(" ")"
-  | command_call name args = "(" ^ name ^ " " ^ space_implode " " args ^ ")"
-fun try_command_line banner time command =
-  banner ^ ": " ^ Markup.markup Isabelle_Markup.sendback command ^ show_time time ^ "."
-fun using_labels [] = ""
-  | using_labels ls =
-    "using " ^ space_implode " " (map string_for_label ls) ^ " "
-fun reconstructor_command reconstr i n (ls, ss) =
-  using_labels ls ^ apply_on_subgoal i n ^
-  command_call (string_for_reconstructor reconstr) ss
-fun minimize_line _ [] = ""
-  | minimize_line minimize_command ss =
-    case minimize_command ss of
-      "" => ""
-    | command => "\nTo minimize: " ^ Markup.markup Isabelle_Markup.sendback command ^ "."
-
-val split_used_facts =
-  List.partition (curry (op =) Chained o snd)
-  #> pairself (sort_distinct (string_ord o pairself fst))
-
-fun one_line_proof_text (preplay, banner, used_facts, minimize_command,
-                         subgoal, subgoal_count) =
-  let
-    val (chained, extra) = split_used_facts used_facts
-    val (failed, reconstr, ext_time) =
-      case preplay of
-        Played (reconstr, time) => (false, reconstr, (SOME (false, time)))
-      | Trust_Playable (reconstr, time) =>
-        (false, reconstr,
-         case time of
-           NONE => NONE
-         | SOME time =>
-           if time = Time.zeroTime then NONE else SOME (true, time))
-      | Failed_to_Play reconstr => (true, reconstr, NONE)
-    val try_line =
-      ([], map fst extra)
-      |> reconstructor_command reconstr subgoal subgoal_count
-      |> (if failed then enclose "One-line proof reconstruction failed: " "."
-          else try_command_line banner ext_time)
-  in try_line ^ minimize_line minimize_command (map fst (extra @ chained)) end
-
-(** Hard-core proof reconstruction: structured Isar proofs **)
-
-fun forall_of v t = HOLogic.all_const (fastype_of v) $ lambda v t
-fun exists_of v t = HOLogic.exists_const (fastype_of v) $ lambda v t
-
-fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS)
-fun make_tfree ctxt w =
-  let val ww = "'" ^ w in
-    TFree (ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))
-  end
-
-val indent_size = 2
-val no_label = ("", ~1)
-
-val raw_prefix = "x"
-val assum_prefix = "a"
-val have_prefix = "f"
-
-fun raw_label_for_name (num, ss) =
-  case resolve_conjecture ss of
-    [j] => (conjecture_prefix, j)
-  | _ => case Int.fromString num of
-           SOME j => (raw_prefix, j)
-         | NONE => (raw_prefix ^ num, 0)
-
-(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
-
-exception HO_TERM of (string, string) ho_term list
-exception FORMULA of (string, string, (string, string) ho_term) formula list
-exception SAME of unit
-
-(* Type variables are given the basic sort "HOL.type". Some will later be
-   constrained by information from type literals, or by type inference. *)
-fun typ_from_atp ctxt (u as ATerm (a, us)) =
-  let val Ts = map (typ_from_atp ctxt) us in
-    case unprefix_and_unascii type_const_prefix a of
-      SOME b => Type (invert_const b, Ts)
-    | NONE =>
-      if not (null us) then
-        raise HO_TERM [u]  (* only "tconst"s have type arguments *)
-      else case unprefix_and_unascii tfree_prefix a of
-        SOME b => make_tfree ctxt b
-      | NONE =>
-        (* Could be an Isabelle variable or a variable from the ATP, say "X1"
-           or "_5018". Sometimes variables from the ATP are indistinguishable
-           from Isabelle variables, which forces us to use a type parameter in
-           all cases. *)
-        (a |> perhaps (unprefix_and_unascii tvar_prefix), HOLogic.typeS)
-        |> Type_Infer.param 0
-  end
-
-(* Type class literal applied to a type. Returns triple of polarity, class,
-   type. *)
-fun type_constraint_from_term ctxt (u as ATerm (a, us)) =
-  case (unprefix_and_unascii class_prefix a, map (typ_from_atp ctxt) us) of
-    (SOME b, [T]) => (b, T)
-  | _ => raise HO_TERM [u]
-
-(* Accumulate type constraints in a formula: negative type literals. *)
-fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
-fun add_type_constraint false (cl, TFree (a ,_)) = add_var ((a, ~1), cl)
-  | add_type_constraint false (cl, TVar (ix, _)) = add_var (ix, cl)
-  | add_type_constraint _ _ = I
-
-fun repair_variable_name f s =
-  let
-    fun subscript_name s n = s ^ nat_subscript n
-    val s = String.map f s
-  in
-    case space_explode "_" s of
-      [_] => (case take_suffix Char.isDigit (String.explode s) of
-                (cs1 as _ :: _, cs2 as _ :: _) =>
-                subscript_name (String.implode cs1)
-                               (the (Int.fromString (String.implode cs2)))
-              | (_, _) => s)
-    | [s1, s2] => (case Int.fromString s2 of
-                     SOME n => subscript_name s1 n
-                   | NONE => s)
-    | _ => s
-  end
-
-(* The number of type arguments of a constant, zero if it's monomorphic. For
-   (instances of) Skolem pseudoconstants, this information is encoded in the
-   constant name. *)
-fun num_type_args thy s =
-  if String.isPrefix skolem_const_prefix s then
-    s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
-  else if String.isPrefix lam_lifted_prefix s then
-    if String.isPrefix lam_lifted_poly_prefix s then 2 else 0
-  else
-    (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
-
-fun slack_fastype_of t = fastype_of t handle TERM _ => HOLogic.typeT
-
-(* First-order translation. No types are known for variables. "HOLogic.typeT"
-   should allow them to be inferred. *)
-fun term_from_atp ctxt textual sym_tab =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    (* For Metis, we use 1 rather than 0 because variable references in clauses
-       may otherwise conflict with variable constraints in the goal. At least,
-       type inference often fails otherwise. See also "axiom_inference" in
-       "Metis_Reconstruct". *)
-    val var_index = if textual then 0 else 1
-    fun do_term extra_ts opt_T u =
-      case u of
-        ATerm (s, us) =>
-        if String.isPrefix simple_type_prefix s then
-          @{const True} (* ignore TPTP type information *)
-        else if s = tptp_equal then
-          let val ts = map (do_term [] NONE) us in
-            if textual andalso length ts = 2 andalso
-              hd ts aconv List.last ts then
-              (* Vampire is keen on producing these. *)
-              @{const True}
-            else
-              list_comb (Const (@{const_name HOL.eq}, HOLogic.typeT), ts)
-          end
-        else case unprefix_and_unascii const_prefix s of
-          SOME s' =>
-          let
-            val ((s', s''), mangled_us) =
-              s' |> unmangled_const |>> `invert_const
-          in
-            if s' = type_tag_name then
-              case mangled_us @ us of
-                [typ_u, term_u] =>
-                do_term extra_ts (SOME (typ_from_atp ctxt typ_u)) term_u
-              | _ => raise HO_TERM us
-            else if s' = predicator_name then
-              do_term [] (SOME @{typ bool}) (hd us)
-            else if s' = app_op_name then
-              let val extra_t = do_term [] NONE (List.last us) in
-                do_term (extra_t :: extra_ts)
-                        (case opt_T of
-                           SOME T => SOME (slack_fastype_of extra_t --> T)
-                         | NONE => NONE)
-                        (nth us (length us - 2))
-              end
-            else if s' = type_guard_name then
-              @{const True} (* ignore type predicates *)
-            else
-              let
-                val new_skolem = String.isPrefix new_skolem_const_prefix s''
-                val num_ty_args =
-                  length us - the_default 0 (Symtab.lookup sym_tab s)
-                val (type_us, term_us) =
-                  chop num_ty_args us |>> append mangled_us
-                val term_ts = map (do_term [] NONE) term_us
-                val T =
-                  (if not (null type_us) andalso
-                      num_type_args thy s' = length type_us then
-                     let val Ts = type_us |> map (typ_from_atp ctxt) in
-                       if new_skolem then
-                         SOME (Type_Infer.paramify_vars (tl Ts ---> hd Ts))
-                       else if textual then
-                         try (Sign.const_instance thy) (s', Ts)
-                       else
-                         NONE
-                     end
-                   else
-                     NONE)
-                  |> (fn SOME T => T
-                       | NONE => map slack_fastype_of term_ts --->
-                                 (case opt_T of
-                                    SOME T => T
-                                  | NONE => HOLogic.typeT))
-                val t =
-                  if new_skolem then
-                    Var ((new_skolem_var_name_from_const s'', var_index), T)
-                  else
-                    Const (unproxify_const s', T)
-              in list_comb (t, term_ts @ extra_ts) end
-          end
-        | NONE => (* a free or schematic variable *)
-          let
-            val term_ts = map (do_term [] NONE) us
-            val ts = term_ts @ extra_ts
-            val T =
-              case opt_T of
-                SOME T => map slack_fastype_of term_ts ---> T
-              | NONE => map slack_fastype_of ts ---> HOLogic.typeT
-            val t =
-              case unprefix_and_unascii fixed_var_prefix s of
-                SOME s => Free (s, T)
-              | NONE =>
-                case unprefix_and_unascii schematic_var_prefix s of
-                  SOME s => Var ((s, var_index), T)
-                | NONE =>
-                  Var ((s |> textual ? repair_variable_name Char.toLower,
-                        var_index), T)
-          in list_comb (t, ts) end
-  in do_term [] end
-
-fun term_from_atom ctxt textual sym_tab pos (u as ATerm (s, _)) =
-  if String.isPrefix class_prefix s then
-    add_type_constraint pos (type_constraint_from_term ctxt u)
-    #> pair @{const True}
-  else
-    pair (term_from_atp ctxt textual sym_tab (SOME @{typ bool}) u)
-
-val combinator_table =
-  [(@{const_name Meson.COMBI}, @{thm Meson.COMBI_def_raw}),
-   (@{const_name Meson.COMBK}, @{thm Meson.COMBK_def_raw}),
-   (@{const_name Meson.COMBB}, @{thm Meson.COMBB_def_raw}),
-   (@{const_name Meson.COMBC}, @{thm Meson.COMBC_def_raw}),
-   (@{const_name Meson.COMBS}, @{thm Meson.COMBS_def_raw})]
-
-fun uncombine_term thy =
-  let
-    fun aux (t1 $ t2) = betapply (pairself aux (t1, t2))
-      | aux (Abs (s, T, t')) = Abs (s, T, aux t')
-      | aux (t as Const (x as (s, _))) =
-        (case AList.lookup (op =) combinator_table s of
-           SOME thm => thm |> prop_of |> specialize_type thy x
-                           |> Logic.dest_equals |> snd
-         | NONE => t)
-      | aux t = t
-  in aux end
-
-(* Update schematic type variables with detected sort constraints. It's not
-   totally clear whether this code is necessary. *)
-fun repair_tvar_sorts (t, tvar_tab) =
-  let
-    fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
-      | do_type (TVar (xi, s)) =
-        TVar (xi, the_default s (Vartab.lookup tvar_tab xi))
-      | do_type (TFree z) = TFree z
-    fun do_term (Const (a, T)) = Const (a, do_type T)
-      | do_term (Free (a, T)) = Free (a, do_type T)
-      | do_term (Var (xi, T)) = Var (xi, do_type T)
-      | do_term (t as Bound _) = t
-      | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
-      | do_term (t1 $ t2) = do_term t1 $ do_term t2
-  in t |> not (Vartab.is_empty tvar_tab) ? do_term end
-
-fun quantify_over_var quant_of var_s t =
-  let
-    val vars = [] |> Term.add_vars t |> filter (fn ((s, _), _) => s = var_s)
-                  |> map Var
-  in fold_rev quant_of vars t end
-
-(* Interpret an ATP formula as a HOL term, extracting sort constraints as they
-   appear in the formula. *)
-fun prop_from_atp ctxt textual sym_tab phi =
-  let
-    fun do_formula pos phi =
-      case phi of
-        AQuant (_, [], phi) => do_formula pos phi
-      | AQuant (q, (s, _) :: xs, phi') =>
-        do_formula pos (AQuant (q, xs, phi'))
-        (* FIXME: TFF *)
-        #>> quantify_over_var (case q of
-                                 AForall => forall_of
-                               | AExists => exists_of)
-                              (s |> textual ? repair_variable_name Char.toLower)
-      | AConn (ANot, [phi']) => do_formula (not pos) phi' #>> s_not
-      | AConn (c, [phi1, phi2]) =>
-        do_formula (pos |> c = AImplies ? not) phi1
-        ##>> do_formula pos phi2
-        #>> (case c of
-               AAnd => s_conj
-             | AOr => s_disj
-             | AImplies => s_imp
-             | AIff => s_iff
-             | ANot => raise Fail "impossible connective")
-      | AAtom tm => term_from_atom ctxt textual sym_tab pos tm
-      | _ => raise FORMULA [phi]
-  in repair_tvar_sorts (do_formula true phi Vartab.empty) end
-
-fun infer_formula_types ctxt =
-  Type.constraint HOLogic.boolT
-  #> Syntax.check_term
-         (Proof_Context.set_mode Proof_Context.mode_schematic ctxt)
-
-fun uncombined_etc_prop_from_atp ctxt textual sym_tab =
-  let val thy = Proof_Context.theory_of ctxt in
-    prop_from_atp ctxt textual sym_tab
-    #> textual ? uncombine_term thy #> infer_formula_types ctxt
-  end
-
-(**** Translation of TSTP files to Isar proofs ****)
-
-fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
-  | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
-
-fun decode_line sym_tab (Definition (name, phi1, phi2)) ctxt =
-    let
-      val thy = Proof_Context.theory_of ctxt
-      val t1 = prop_from_atp ctxt true sym_tab phi1
-      val vars = snd (strip_comb t1)
-      val frees = map unvarify_term vars
-      val unvarify_args = subst_atomic (vars ~~ frees)
-      val t2 = prop_from_atp ctxt true sym_tab phi2
-      val (t1, t2) =
-        HOLogic.eq_const HOLogic.typeT $ t1 $ t2
-        |> unvarify_args |> uncombine_term thy |> infer_formula_types ctxt
-        |> HOLogic.dest_eq
-    in
-      (Definition (name, t1, t2),
-       fold Variable.declare_term (maps Misc_Legacy.term_frees [t1, t2]) ctxt)
-    end
-  | decode_line sym_tab (Inference (name, u, rule, deps)) ctxt =
-    let val t = u |> uncombined_etc_prop_from_atp ctxt true sym_tab in
-      (Inference (name, t, rule, deps),
-       fold Variable.declare_term (Misc_Legacy.term_frees t) ctxt)
-    end
-fun decode_lines ctxt sym_tab lines =
-  fst (fold_map (decode_line sym_tab) lines ctxt)
-
-fun is_same_inference _ (Definition _) = false
-  | is_same_inference t (Inference (_, t', _, _)) = t aconv t'
-
-(* No "real" literals means only type information (tfree_tcs, clsrel, or
-   clsarity). *)
-val is_only_type_information = curry (op aconv) @{term True}
-
-fun replace_one_dependency (old, new) dep =
-  if is_same_atp_step dep old then new else [dep]
-fun replace_dependencies_in_line _ (line as Definition _) = line
-  | replace_dependencies_in_line p (Inference (name, t, rule, deps)) =
-    Inference (name, t, rule,
-               fold (union (op =) o replace_one_dependency p) deps [])
-
-(* Discard facts; consolidate adjacent lines that prove the same formula, since
-   they differ only in type information.*)
-fun add_line _ (line as Definition _) lines = line :: lines
-  | add_line fact_names (Inference (name as (_, ss), t, rule, [])) lines =
-    (* No dependencies: fact, conjecture, or (for Vampire) internal facts or
-       definitions. *)
-    if is_fact fact_names ss then
-      (* Facts are not proof lines. *)
-      if is_only_type_information t then
-        map (replace_dependencies_in_line (name, [])) lines
-      (* Is there a repetition? If so, replace later line by earlier one. *)
-      else case take_prefix (not o is_same_inference t) lines of
-        (_, []) => lines (* no repetition of proof line *)
-      | (pre, Inference (name', _, _, _) :: post) =>
-        pre @ map (replace_dependencies_in_line (name', [name])) post
-      | _ => raise Fail "unexpected inference"
-    else if is_conjecture ss then
-      Inference (name, s_not t, rule, []) :: lines
-    else
-      map (replace_dependencies_in_line (name, [])) lines
-  | add_line _ (Inference (name, t, rule, deps)) lines =
-    (* Type information will be deleted later; skip repetition test. *)
-    if is_only_type_information t then
-      Inference (name, t, rule, deps) :: lines
-    (* Is there a repetition? If so, replace later line by earlier one. *)
-    else case take_prefix (not o is_same_inference t) lines of
-      (* FIXME: Doesn't this code risk conflating proofs involving different
-         types? *)
-       (_, []) => Inference (name, t, rule, deps) :: lines
-     | (pre, Inference (name', t', rule, _) :: post) =>
-       Inference (name, t', rule, deps) ::
-       pre @ map (replace_dependencies_in_line (name', [name])) post
-     | _ => raise Fail "unexpected inference"
-
-(* Recursively delete empty lines (type information) from the proof. *)
-fun add_nontrivial_line (line as Inference (name, t, _, [])) lines =
-    if is_only_type_information t then delete_dependency name lines
-    else line :: lines
-  | add_nontrivial_line line lines = line :: lines
-and delete_dependency name lines =
-  fold_rev add_nontrivial_line
-           (map (replace_dependencies_in_line (name, [])) lines) []
-
-(* ATPs sometimes reuse free variable names in the strangest ways. Removing
-   offending lines often does the trick. *)
-fun is_bad_free frees (Free x) = not (member (op =) frees x)
-  | is_bad_free _ _ = false
-
-fun add_desired_line _ _ _ (line as Definition (name, _, _)) (j, lines) =
-    (j, line :: map (replace_dependencies_in_line (name, [])) lines)
-  | add_desired_line isar_shrink_factor fact_names frees
-                     (Inference (name as (_, ss), t, rule, deps)) (j, lines) =
-    (j + 1,
-     if is_fact fact_names ss orelse
-        is_conjecture ss orelse
-        (* the last line must be kept *)
-        j = 0 orelse
-        (not (is_only_type_information t) andalso
-         null (Term.add_tvars t []) andalso
-         not (exists_subterm (is_bad_free frees) t) andalso
-         length deps >= 2 andalso j mod isar_shrink_factor = 0 andalso
-         (* kill next to last line, which usually results in a trivial step *)
-         j <> 1) then
-       Inference (name, t, rule, deps) :: lines  (* keep line *)
-     else
-       map (replace_dependencies_in_line (name, deps)) lines)  (* drop line *)
-
-(** Isar proof construction and manipulation **)
-
-type label = string * int
-type facts = label list * string list
-
-datatype isar_qualifier = Show | Then | Moreover | Ultimately
-
-datatype isar_step =
-  Fix of (string * typ) list |
-  Let of term * term |
-  Assume of label * term |
-  Prove of isar_qualifier list * label * term * byline
-and byline =
-  By_Metis of facts |
-  Case_Split of isar_step list list * facts
-
-fun add_fact_from_dependency fact_names (name as (_, ss)) =
-  if is_fact fact_names ss then
-    apsnd (union (op =) (map fst (resolve_fact fact_names ss)))
-  else
-    apfst (insert (op =) (raw_label_for_name name))
-
-fun repair_name "$true" = "c_True"
-  | repair_name "$false" = "c_False"
-  | repair_name "$$e" = tptp_equal (* seen in Vampire proofs *)
-  | repair_name s =
-    if is_tptp_equal s orelse
-       (* seen in Vampire proofs *)
-       (String.isPrefix "sQ" s andalso String.isSuffix "_eqProxy" s) then
-      tptp_equal
-    else
-      s
-
-(* FIXME: Still needed? Try with SPASS proofs perhaps. *)
-val kill_duplicate_assumptions_in_proof =
-  let
-    fun relabel_facts subst =
-      apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
-    fun do_step (step as Assume (l, t)) (proof, subst, assums) =
-        (case AList.lookup (op aconv) assums t of
-           SOME l' => (proof, (l, l') :: subst, assums)
-         | NONE => (step :: proof, subst, (t, l) :: assums))
-      | do_step (Prove (qs, l, t, by)) (proof, subst, assums) =
-        (Prove (qs, l, t,
-                case by of
-                  By_Metis facts => By_Metis (relabel_facts subst facts)
-                | Case_Split (proofs, facts) =>
-                  Case_Split (map do_proof proofs,
-                              relabel_facts subst facts)) ::
-         proof, subst, assums)
-      | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
-    and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
-  in do_proof end
-
-fun used_labels_of_step (Prove (_, _, _, by)) =
-    (case by of
-       By_Metis (ls, _) => ls
-     | Case_Split (proofs, (ls, _)) =>
-       fold (union (op =) o used_labels_of) proofs ls)
-  | used_labels_of_step _ = []
-and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
-
-fun kill_useless_labels_in_proof proof =
-  let
-    val used_ls = used_labels_of proof
-    fun do_label l = if member (op =) used_ls l then l else no_label
-    fun do_step (Assume (l, t)) = Assume (do_label l, t)
-      | do_step (Prove (qs, l, t, by)) =
-        Prove (qs, do_label l, t,
-               case by of
-                 Case_Split (proofs, facts) =>
-                 Case_Split (map (map do_step) proofs, facts)
-               | _ => by)
-      | do_step step = step
-  in map do_step proof end
-
-fun prefix_for_depth n = replicate_string (n + 1)
-
-val relabel_proof =
-  let
-    fun aux _ _ _ [] = []
-      | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
-        if l = no_label then
-          Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
-        else
-          let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
-            Assume (l', t) ::
-            aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
-          end
-      | aux subst depth (next_assum, next_fact)
-            (Prove (qs, l, t, by) :: proof) =
-        let
-          val (l', subst, next_fact) =
-            if l = no_label then
-              (l, subst, next_fact)
-            else
-              let
-                val l' = (prefix_for_depth depth have_prefix, next_fact)
-              in (l', (l, l') :: subst, next_fact + 1) end
-          val relabel_facts =
-            apfst (maps (the_list o AList.lookup (op =) subst))
-          val by =
-            case by of
-              By_Metis facts => By_Metis (relabel_facts facts)
-            | Case_Split (proofs, facts) =>
-              Case_Split (map (aux subst (depth + 1) (1, 1)) proofs,
-                          relabel_facts facts)
-        in
-          Prove (qs, l', t, by) :: aux subst depth (next_assum, next_fact) proof
-        end
-      | aux subst depth nextp (step :: proof) =
-        step :: aux subst depth nextp proof
-  in aux [] 0 (1, 1) end
-
-fun string_for_proof ctxt0 type_enc lam_trans i n =
-  let
-    val ctxt =
-      ctxt0 |> Config.put show_free_types false
-            |> Config.put show_types true
-            |> Config.put show_sorts true
-    fun fix_print_mode f x =
-      Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
-                               (print_mode_value ())) f x
-    fun do_indent ind = replicate_string (ind * indent_size) " "
-    fun do_free (s, T) =
-      maybe_quote s ^ " :: " ^
-      maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
-    fun do_label l = if l = no_label then "" else string_for_label l ^ ": "
-    fun do_have qs =
-      (if member (op =) qs Moreover then "moreover " else "") ^
-      (if member (op =) qs Ultimately then "ultimately " else "") ^
-      (if member (op =) qs Then then
-         if member (op =) qs Show then "thus" else "hence"
-       else
-         if member (op =) qs Show then "show" else "have")
-    val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
-    val reconstr = Metis (type_enc, lam_trans)
-    fun do_facts (ls, ss) =
-      reconstructor_command reconstr 1 1
-          (ls |> sort_distinct (prod_ord string_ord int_ord),
-           ss |> sort_distinct string_ord)
-    and do_step ind (Fix xs) =
-        do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
-      | do_step ind (Let (t1, t2)) =
-        do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
-      | do_step ind (Assume (l, t)) =
-        do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
-      | do_step ind (Prove (qs, l, t, By_Metis facts)) =
-        do_indent ind ^ do_have qs ^ " " ^
-        do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
-      | do_step ind (Prove (qs, l, t, Case_Split (proofs, facts))) =
-        implode (map (prefix (do_indent ind ^ "moreover\n") o do_block ind)
-                     proofs) ^
-        do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
-        do_facts facts ^ "\n"
-    and do_steps prefix suffix ind steps =
-      let val s = implode (map (do_step ind) steps) in
-        replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
-        String.extract (s, ind * indent_size,
-                        SOME (size s - ind * indent_size - 1)) ^
-        suffix ^ "\n"
-      end
-    and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
-    (* One-step proofs are pointless; better use the Metis one-liner
-       directly. *)
-    and do_proof [Prove (_, _, _, By_Metis _)] = ""
-      | do_proof proof =
-        (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
-        do_indent 0 ^ "proof -\n" ^ do_steps "" "" 1 proof ^ do_indent 0 ^
-        (if n <> 1 then "next" else "qed")
-  in do_proof end
-
-fun isar_proof_text ctxt isar_proof_requested
-        (debug, isar_shrink_factor, pool, fact_names, sym_tab, atp_proof, goal)
-        (one_line_params as (_, _, _, _, subgoal, subgoal_count)) =
-  let
-    val isar_shrink_factor =
-      (if isar_proof_requested then 1 else 2) * isar_shrink_factor
-    val (params, hyp_ts, concl_t) = strip_subgoal ctxt goal subgoal
-    val frees = fold Term.add_frees (concl_t :: hyp_ts) []
-    val one_line_proof = one_line_proof_text one_line_params
-    val type_enc =
-      if is_typed_helper_used_in_atp_proof atp_proof then full_typesN
-      else partial_typesN
-    val lam_trans = lam_trans_from_atp_proof atp_proof metis_default_lam_trans
-
-    fun isar_proof_of () =
-      let
-        val atp_proof =
-          atp_proof
-          |> clean_up_atp_proof_dependencies
-          |> nasty_atp_proof pool
-          |> map_term_names_in_atp_proof repair_name
-          |> decode_lines ctxt sym_tab
-          |> rpair [] |-> fold_rev (add_line fact_names)
-          |> rpair [] |-> fold_rev add_nontrivial_line
-          |> rpair (0, [])
-          |-> fold_rev (add_desired_line isar_shrink_factor fact_names frees)
-          |> snd
-        val conj_name = conjecture_prefix ^ string_of_int (length hyp_ts)
-        val conjs =
-          atp_proof
-          |> map_filter (fn Inference (name as (_, ss), _, _, []) =>
-                            if member (op =) ss conj_name then SOME name else NONE
-                          | _ => NONE)
-        fun dep_of_step (Definition _) = NONE
-          | dep_of_step (Inference (name, _, _, from)) = SOME (from, name)
-        val ref_graph = atp_proof |> map_filter dep_of_step |> make_ref_graph
-        val axioms = axioms_of_ref_graph ref_graph conjs
-        val tainted = tainted_atoms_of_ref_graph ref_graph conjs
-        val props =
-          Symtab.empty
-          |> fold (fn Definition _ => I (* FIXME *)
-                    | Inference ((s, _), t, _, _) =>
-                      Symtab.update_new (s,
-                          t |> member (op = o apsnd fst) tainted s ? s_not))
-                  atp_proof
-        (* FIXME: add "fold_rev forall_of (map Var (Term.add_vars t []))"? *)
-        fun prop_of_clause c =
-          fold (curry s_disj) (map_filter (Symtab.lookup props o fst) c)
-               @{term False}
-        fun label_of_clause c = (space_implode "___" (map fst c), 0)
-        fun maybe_show outer c =
-          (outer andalso length c = 1 andalso subset (op =) (c, conjs))
-          ? cons Show
-        fun do_have outer qs (gamma, c) =
-          Prove (maybe_show outer c qs, label_of_clause c, prop_of_clause c,
-                 By_Metis (fold (add_fact_from_dependency fact_names
-                                 o the_single) gamma ([], [])))
-        fun do_inf outer (Have z) = do_have outer [] z
-          | do_inf outer (Hence z) = do_have outer [Then] z
-          | do_inf outer (Cases cases) =
-            let val c = succedent_of_cases cases in
-              Prove (maybe_show outer c [Ultimately], label_of_clause c,
-                     prop_of_clause c,
-                     Case_Split (map (do_case false) cases, ([], [])))
-            end
-        and do_case outer (c, infs) =
-          Assume (label_of_clause c, prop_of_clause c) ::
-          map (do_inf outer) infs
-        val isar_proof =
-          (if null params then [] else [Fix params]) @
-          (ref_graph
-           |> redirect_graph axioms tainted
-           |> chain_direct_proof
-           |> map (do_inf true)
-           |> kill_duplicate_assumptions_in_proof
-           |> kill_useless_labels_in_proof
-           |> relabel_proof)
-          |> string_for_proof ctxt type_enc lam_trans subgoal subgoal_count
-      in
-        case isar_proof of
-          "" =>
-          if isar_proof_requested then
-            "\nNo structured proof available (proof too short)."
-          else
-            ""
-        | _ =>
-          "\n\n" ^ (if isar_proof_requested then "Structured proof"
-                    else "Perhaps this will work") ^
-          ":\n" ^ Markup.markup Isabelle_Markup.sendback isar_proof
-      end
-    val isar_proof =
-      if debug then
-        isar_proof_of ()
-      else case try isar_proof_of () of
-        SOME s => s
-      | NONE => if isar_proof_requested then
-                  "\nWarning: The Isar proof construction failed."
-                else
-                  ""
-  in one_line_proof ^ isar_proof end
-
-fun proof_text ctxt isar_proof isar_params
-               (one_line_params as (preplay, _, _, _, _, _)) =
-  (if case preplay of Failed_to_Play _ => true | _ => isar_proof then
-     isar_proof_text ctxt isar_proof isar_params
-   else
-     one_line_proof_text) one_line_params
-
-end;