--- a/src/HOL/Set.thy Tue Jul 28 13:37:08 2009 +0200
+++ b/src/HOL/Set.thy Tue Jul 28 13:37:09 2009 +0200
@@ -100,8 +100,8 @@
text {* Set enumerations *}
-definition empty :: "'a set" ("{}") where
- bot_set_eq [symmetric]: "{} = bot"
+abbreviation empty :: "'a set" ("{}") where
+ "{} \<equiv> bot"
definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
@@ -541,12 +541,12 @@
subsubsection {* The universal set -- UNIV *}
-definition UNIV :: "'a set" where
- top_set_eq [symmetric]: "UNIV = top"
+abbreviation UNIV :: "'a set" where
+ "UNIV \<equiv> top"
lemma UNIV_def:
"UNIV = {x. True}"
- by (simp add: top_set_eq [symmetric] top_fun_eq top_bool_eq Collect_def)
+ by (simp add: top_fun_eq top_bool_eq Collect_def)
lemma UNIV_I [simp]: "x : UNIV"
by (simp add: UNIV_def)
@@ -579,7 +579,7 @@
lemma empty_def:
"{} = {x. False}"
- by (simp add: bot_set_eq [symmetric] bot_fun_eq bot_bool_eq Collect_def)
+ by (simp add: bot_fun_eq bot_bool_eq Collect_def)
lemma empty_iff [simp]: "(c : {}) = False"
by (simp add: empty_def)