src/ZF/Constructible/Reflection.thy
changeset 76214 0c18df79b1c8
parent 76213 e44d86131648
child 76215 a642599ffdea
--- a/src/ZF/Constructible/Reflection.thy	Tue Sep 27 16:51:35 2022 +0100
+++ b/src/ZF/Constructible/Reflection.thy	Tue Sep 27 17:03:23 2022 +0100
@@ -35,16 +35,16 @@
       and Mset_cont    : "cont_Ord(Mset)"
       and Pair_in_Mset : "\<lbrakk>x \<in> Mset(a); y \<in> Mset(a); Limit(a)\<rbrakk>
                           \<Longrightarrow> <x,y> \<in> Mset(a)"
-  defines "M(x) \<equiv> \<exists>a. Ord(a) & x \<in> Mset(a)"
-      and "Reflects(Cl,P,Q) \<equiv> Closed_Unbounded(Cl) &
+  defines "M(x) \<equiv> \<exists>a. Ord(a) \<and> x \<in> Mset(a)"
+      and "Reflects(Cl,P,Q) \<equiv> Closed_Unbounded(Cl) \<and>
                               (\<forall>a. Cl(a) \<longrightarrow> (\<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)))"
   fixes F0 \<comment> \<open>ordinal for a specific value \<^term>\<open>y\<close>\<close>
   fixes FF \<comment> \<open>sup over the whole level, \<^term>\<open>y\<in>Mset(a)\<close>\<close>
   fixes ClEx \<comment> \<open>Reflecting ordinals for the formula \<^term>\<open>\<exists>z. P\<close>\<close>
-  defines "F0(P,y) \<equiv> \<mu> b. (\<exists>z. M(z) & P(<y,z>)) \<longrightarrow>
+  defines "F0(P,y) \<equiv> \<mu> b. (\<exists>z. M(z) \<and> P(<y,z>)) \<longrightarrow>
                                (\<exists>z\<in>Mset(b). P(<y,z>))"
       and "FF(P)   \<equiv> \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)"
-      and "ClEx(P,a) \<equiv> Limit(a) & normalize(FF(P),a) = a"
+      and "ClEx(P,a) \<equiv> Limit(a) \<and> normalize(FF(P),a) = a"
 
 begin 
 
@@ -54,7 +54,7 @@
 text\<open>Awkward: we need a version of \<open>ClEx_def\<close> as an equality
       at the level of classes, which do not really exist\<close>
 lemma ClEx_eq:
-     "ClEx(P) \<equiv> \<lambda>a. Limit(a) & normalize(FF(P),a) = a"
+     "ClEx(P) \<equiv> \<lambda>a. Limit(a) \<and> normalize(FF(P),a) = a"
 by (simp add: ClEx_def [symmetric])
 
 
@@ -70,26 +70,26 @@
 
 theorem And_reflection [intro]:
   "\<lbrakk>Reflects(Cl,P,Q); Reflects(C',P',Q')\<rbrakk>
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) & P'(x),
-                                      \<lambda>a x. Q(a,x) & Q'(a,x))"
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> C'(a), \<lambda>x. P(x) \<and> P'(x),
+                                      \<lambda>a x. Q(a,x) \<and> Q'(a,x))"
   by (simp add: Reflects_def Closed_Unbounded_Int, blast)
 
 theorem Or_reflection [intro]:
      "\<lbrakk>Reflects(Cl,P,Q); Reflects(C',P',Q')\<rbrakk>
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) | P'(x),
-                                      \<lambda>a x. Q(a,x) | Q'(a,x))"
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> C'(a), \<lambda>x. P(x) \<or> P'(x),
+                                      \<lambda>a x. Q(a,x) \<or> Q'(a,x))"
 by (simp add: Reflects_def Closed_Unbounded_Int, blast)
 
 theorem Imp_reflection [intro]:
      "\<lbrakk>Reflects(Cl,P,Q); Reflects(C',P',Q')\<rbrakk>
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & C'(a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> C'(a),
                    \<lambda>x. P(x) \<longrightarrow> P'(x),
                    \<lambda>a x. Q(a,x) \<longrightarrow> Q'(a,x))"
 by (simp add: Reflects_def Closed_Unbounded_Int, blast)
 
 theorem Iff_reflection [intro]:
      "\<lbrakk>Reflects(Cl,P,Q); Reflects(C',P',Q')\<rbrakk>
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & C'(a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> C'(a),
                    \<lambda>x. P(x) \<longleftrightarrow> P'(x),
                    \<lambda>a x. Q(a,x) \<longleftrightarrow> Q'(a,x))"
 by (simp add: Reflects_def Closed_Unbounded_Int, blast)
@@ -97,33 +97,32 @@
 subsection\<open>Reflection for Existential Quantifiers\<close>
 
 lemma F0_works:
-     "\<lbrakk>y\<in>Mset(a); Ord(a); M(z); P(<y,z>)\<rbrakk> \<Longrightarrow> \<exists>z\<in>Mset(F0(P,y)). P(<y,z>)"
-apply (unfold F0_def M_def, clarify)
-apply (rule LeastI2)
-  apply (blast intro: Mset_mono [THEN subsetD])
- apply (blast intro: lt_Ord2, blast)
-done
+  "\<lbrakk>y\<in>Mset(a); Ord(a); M(z); P(<y,z>)\<rbrakk> \<Longrightarrow> \<exists>z\<in>Mset(F0(P,y)). P(<y,z>)"
+  unfolding F0_def M_def
+  apply clarify
+  apply (rule LeastI2)
+    apply (blast intro: Mset_mono [THEN subsetD])
+   apply (blast intro: lt_Ord2, blast)
+  done
 
 lemma Ord_F0 [intro,simp]: "Ord(F0(P,y))"
-by (simp add: F0_def)
+  by (simp add: F0_def)
 
 lemma Ord_FF [intro,simp]: "Ord(FF(P,y))"
-by (simp add: FF_def)
+  by (simp add: FF_def)
 
 lemma cont_Ord_FF: "cont_Ord(FF(P))"
-apply (insert Mset_cont)
-apply (simp add: cont_Ord_def FF_def, blast)
-done
+  using Mset_cont by (simp add: cont_Ord_def FF_def, blast)
 
 text\<open>Recall that \<^term>\<open>F0\<close> depends upon \<^term>\<open>y\<in>Mset(a)\<close>,
 while \<^term>\<open>FF\<close> depends only upon \<^term>\<open>a\<close>.\<close>
 lemma FF_works:
-     "\<lbrakk>M(z); y\<in>Mset(a); P(<y,z>); Ord(a)\<rbrakk> \<Longrightarrow> \<exists>z\<in>Mset(FF(P,a)). P(<y,z>)"
-apply (simp add: FF_def)
-apply (simp_all add: cont_Ord_Union [of concl: Mset]
-                     Mset_cont Mset_mono_le not_emptyI)
-apply (blast intro: F0_works)
-done
+  "\<lbrakk>M(z); y\<in>Mset(a); P(<y,z>); Ord(a)\<rbrakk> \<Longrightarrow> \<exists>z\<in>Mset(FF(P,a)). P(<y,z>)"
+  apply (simp add: FF_def)
+  apply (simp_all add: cont_Ord_Union [of concl: Mset]
+      Mset_cont Mset_mono_le not_emptyI)
+  apply (blast intro: F0_works)
+  done
 
 lemma FFN_works:
      "\<lbrakk>M(z); y\<in>Mset(a); P(<y,z>); Ord(a)\<rbrakk>
@@ -156,7 +155,7 @@
 
 lemma ClEx_upward:
      "\<lbrakk>z\<in>Mset(a); y\<in>Mset(a); Q(a,<y,z>); Cl(a); ClEx(P,a)\<rbrakk>
-      \<Longrightarrow> \<exists>z. M(z) & P(<y,z>)"
+      \<Longrightarrow> \<exists>z. M(z) \<and> P(<y,z>)"
 apply (simp add: ClEx_def M_def)
 apply (blast dest: Cl_reflects
              intro: Limit_is_Ord Pair_in_Mset)
@@ -165,7 +164,7 @@
 text\<open>Class \<open>ClEx\<close> indeed consists of reflecting ordinals...\<close>
 lemma ZF_ClEx_iff:
      "\<lbrakk>y\<in>Mset(a); Cl(a); ClEx(P,a)\<rbrakk>
-      \<Longrightarrow> (\<exists>z. M(z) & P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
+      \<Longrightarrow> (\<exists>z. M(z) \<and> P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
 by (blast intro: dest: ClEx_downward ClEx_upward)
 
 text\<open>...and it is closed and unbounded\<close>
@@ -187,7 +186,7 @@
 lemma ClEx_iff:
      "\<lbrakk>y\<in>Mset(a); Cl(a); ClEx(P,a);
         \<And>a. \<lbrakk>Cl(a); Ord(a)\<rbrakk> \<Longrightarrow> \<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)\<rbrakk>
-      \<Longrightarrow> (\<exists>z. M(z) & P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
+      \<Longrightarrow> (\<exists>z. M(z) \<and> P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
 apply (unfold ClEx_def FF_def F0_def M_def)
 apply (rule ex_reflection.ZF_ClEx_iff
   [OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro,
@@ -215,8 +214,8 @@
 
 lemma Ex_reflection_0:
      "Reflects(Cl,P0,Q0)
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(P0,a),
-                   \<lambda>x. \<exists>z. M(z) & P0(<x,z>),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(P0,a),
+                   \<lambda>x. \<exists>z. M(z) \<and> P0(<x,z>),
                    \<lambda>a x. \<exists>z\<in>Mset(a). Q0(a,<x,z>))"
 apply (simp add: Reflects_def)
 apply (intro conjI Closed_Unbounded_Int)
@@ -227,7 +226,7 @@
 
 lemma All_reflection_0:
      "Reflects(Cl,P0,Q0)
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x.\<not>P0(x), a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x.\<not>P0(x), a),
                    \<lambda>x. \<forall>z. M(z) \<longrightarrow> P0(<x,z>),
                    \<lambda>a x. \<forall>z\<in>Mset(a). Q0(a,<x,z>))"
 apply (simp only: all_iff_not_ex_not ball_iff_not_bex_not)
@@ -237,15 +236,15 @@
 
 theorem Ex_reflection [intro]:
      "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
-                   \<lambda>x. \<exists>z. M(z) & P(x,z),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. P(fst(x),snd(x)), a),
+                   \<lambda>x. \<exists>z. M(z) \<and> P(x,z),
                    \<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
 by (rule Ex_reflection_0 [of _ " \<lambda>x. P(fst(x),snd(x))"
                                "\<lambda>a x. Q(a,fst(x),snd(x))", simplified])
 
 theorem All_reflection [intro]:
      "Reflects(Cl,  \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. \<not>P(fst(x),snd(x)), a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. \<not>P(fst(x),snd(x)), a),
                    \<lambda>x. \<forall>z. M(z) \<longrightarrow> P(x,z),
                    \<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
 by (rule All_reflection_0 [of _ "\<lambda>x. P(fst(x),snd(x))"
@@ -255,14 +254,14 @@
 
 theorem Rex_reflection [intro]:
      "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. P(fst(x),snd(x)), a),
                    \<lambda>x. \<exists>z[M]. P(x,z),
                    \<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
 by (unfold rex_def, blast)
 
 theorem Rall_reflection [intro]:
      "Reflects(Cl,  \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
-      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. \<not>P(fst(x),snd(x)), a),
+      \<Longrightarrow> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. \<not>P(fst(x),snd(x)), a),
                    \<lambda>x. \<forall>z[M]. P(x,z),
                    \<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
 by (unfold rall_def, blast)
@@ -278,7 +277,7 @@
 proof state.\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & x \<in> y,
+               \<lambda>x. \<exists>y. M(y) \<and> x \<in> y,
                \<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
 by fast
 
@@ -286,8 +285,8 @@
 in the class of reflecting ordinals.  The \<^term>\<open>Ord(a)\<close> is redundant,
 though harmless.\<close>
 lemma
-     "Reflects(\<lambda>a. Ord(a) & ClEx(\<lambda>x. fst(x) \<in> snd(x), a),
-               \<lambda>x. \<exists>y. M(y) & x \<in> y,
+     "Reflects(\<lambda>a. Ord(a) \<and> ClEx(\<lambda>x. fst(x) \<in> snd(x), a),
+               \<lambda>x. \<exists>y. M(y) \<and> x \<in> y,
                \<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
 by fast
 
@@ -295,31 +294,31 @@
 text\<open>Example 2\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
+               \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
                \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
 by fast
 
 text\<open>Example 2'.  We give the reflecting class explicitly.\<close>
 lemma
   "Reflects
-    (\<lambda>a. (Ord(a) &
-          ClEx(\<lambda>x. \<not> (snd(x) \<subseteq> fst(fst(x)) \<longrightarrow> snd(x) \<in> snd(fst(x))), a)) &
+    (\<lambda>a. (Ord(a) \<and>
+          ClEx(\<lambda>x. \<not> (snd(x) \<subseteq> fst(fst(x)) \<longrightarrow> snd(x) \<in> snd(fst(x))), a)) \<and>
           ClEx(\<lambda>x. \<forall>z. M(z) \<longrightarrow> z \<subseteq> fst(x) \<longrightarrow> z \<in> snd(x), a),
-            \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
+            \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
             \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
 by fast
 
 text\<open>Example 2''.  We expand the subset relation.\<close>
 schematic_goal
   "Reflects(?Cl,
-        \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> (\<forall>w. M(w) \<longrightarrow> w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y),
+        \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) \<longrightarrow> (\<forall>w. M(w) \<longrightarrow> w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y),
         \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y)"
 by fast
 
 text\<open>Example 2'''.  Single-step version, to reveal the reflecting class.\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
+               \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
                \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
 apply (rule Ex_reflection)
 txt\<open>
@@ -339,21 +338,21 @@
 if \<^term>\<open>P\<close> is quantifier-free, since it is not being relativized.\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<in> y \<longleftrightarrow> z \<in> x & P(z)),
-               \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y \<longleftrightarrow> z \<in> x & P(z))"
+               \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) \<longrightarrow> z \<in> y \<longleftrightarrow> z \<in> x \<and> P(z)),
+               \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y \<longleftrightarrow> z \<in> x \<and> P(z))"
 by fast
 
 text\<open>Example 3'\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & y = Collect(x,P),
+               \<lambda>x. \<exists>y. M(y) \<and> y = Collect(x,P),
                \<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))"
 by fast
 
 text\<open>Example 3''\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>x. \<exists>y. M(y) & y = Replace(x,P),
+               \<lambda>x. \<exists>y. M(y) \<and> y = Replace(x,P),
                \<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))"
 by fast
 
@@ -361,7 +360,7 @@
 to be relativized.\<close>
 schematic_goal
      "Reflects(?Cl,
-               \<lambda>A. 0\<notin>A \<longrightarrow> (\<exists>f. M(f) & f \<in> (\<Prod>X \<in> A. X)),
+               \<lambda>A. 0\<notin>A \<longrightarrow> (\<exists>f. M(f) \<and> f \<in> (\<Prod>X \<in> A. X)),
                \<lambda>a A. 0\<notin>A \<longrightarrow> (\<exists>f\<in>Mset(a). f \<in> (\<Prod>X \<in> A. X)))"
 by fast