--- a/src/ZF/InfDatatype.thy Tue Sep 27 16:51:35 2022 +0100
+++ b/src/ZF/InfDatatype.thy Tue Sep 27 17:03:23 2022 +0100
@@ -12,7 +12,7 @@
lemma fun_Vcsucc_lemma:
assumes f: "f \<in> D -> Vfrom(A,csucc(K))" and DK: "|D| \<le> K" and ICK: "InfCard(K)"
- shows "\<exists>j. f \<in> D -> Vfrom(A,j) & j < csucc(K)"
+ shows "\<exists>j. f \<in> D -> Vfrom(A,j) \<and> j < csucc(K)"
proof (rule exI, rule conjI)
show "f \<in> D \<rightarrow> Vfrom(A, \<Union>z\<in>D. \<mu> i. f`z \<in> Vfrom (A,i))"
proof (rule Pi_type [OF f])
@@ -46,7 +46,7 @@
lemma subset_Vcsucc:
"\<lbrakk>D \<subseteq> Vfrom(A,csucc(K)); |D| \<le> K; InfCard(K)\<rbrakk>
- \<Longrightarrow> \<exists>j. D \<subseteq> Vfrom(A,j) & j < csucc(K)"
+ \<Longrightarrow> \<exists>j. D \<subseteq> Vfrom(A,j) \<and> j < csucc(K)"
by (simp add: subset_iff_id fun_Vcsucc_lemma)
(*Version for arbitrary index sets*)