--- a/src/ZF/UNITY/Distributor.thy Tue Sep 27 16:51:35 2022 +0100
+++ b/src/ZF/UNITY/Distributor.thy Tue Sep 27 17:03:23 2022 +0100
@@ -22,7 +22,7 @@
(\<Inter>n \<in> Nclients.
lift(Out(n))
Fols
- (%s. sublist(s`In, {k \<in> nat. k<length(s`iIn) & nth(k, s`iIn) = n}))
+ (%s. sublist(s`In, {k \<in> nat. k<length(s`iIn) \<and> nth(k, s`iIn) = n}))
Wrt prefix(A)/list(A))"
definition
@@ -43,13 +43,13 @@
and A \<comment> \<open>the type of items being distributed\<close>
and D
assumes
- var_assumes [simp]: "In \<in> var & iIn \<in> var & (\<forall>n. Out(n):var)"
+ var_assumes [simp]: "In \<in> var \<and> iIn \<in> var \<and> (\<forall>n. Out(n):var)"
and all_distinct_vars: "\<forall>n. all_distinct([In, iIn, Out(n)])"
- and type_assumes [simp]: "type_of(In)=list(A) & type_of(iIn)=list(nat) &
+ and type_assumes [simp]: "type_of(In)=list(A) \<and> type_of(iIn)=list(nat) \<and>
(\<forall>n. type_of(Out(n))=list(A))"
and default_val_assumes [simp]:
- "default_val(In)=Nil &
- default_val(iIn)=Nil &
+ "default_val(In)=Nil \<and>
+ default_val(iIn)=Nil \<and>
(\<forall>n. default_val(Out(n))=Nil)"
and distr_spec: "D \<in> distr_spec(A, In, iIn, Out)"
@@ -79,7 +79,7 @@
lemma (in distr) D_ok_iff:
"G \<in> program \<Longrightarrow>
- D ok G \<longleftrightarrow> ((\<forall>n \<in> nat. G \<in> preserves(lift(Out(n)))) & D \<in> Allowed(G))"
+ D ok G \<longleftrightarrow> ((\<forall>n \<in> nat. G \<in> preserves(lift(Out(n)))) \<and> D \<in> Allowed(G))"
apply (cut_tac distr_spec)
apply (auto simp add: INT_iff distr_spec_def distr_allowed_acts_def
Allowed_def ok_iff_Allowed)
@@ -106,7 +106,7 @@
\<forall>elt \<in> set_of_list(s`iIn). elt < Nclients})\<rbrakk>
\<Longrightarrow> D \<squnion> G \<in> Always
({s \<in> state. msetsum(%n. bag_of (sublist(s`In,
- {k \<in> nat. k < length(s`iIn) &
+ {k \<in> nat. k < length(s`iIn) \<and>
nth(k, s`iIn)= n})),
Nclients, A) =
bag_of(sublist(s`In, length(s`iIn)))})"
@@ -122,7 +122,7 @@
apply (simp (no_asm_simp))
apply (simp add: set_of_list_conv_nth [of _ nat])
apply (subgoal_tac
- "(\<Union>i \<in> Nclients. {k\<in>nat. k < length(s`iIn) & nth(k, s`iIn) = i}) =
+ "(\<Union>i \<in> Nclients. {k\<in>nat. k < length(s`iIn) \<and> nth(k, s`iIn) = i}) =
length(s`iIn) ")
apply (simp (no_asm_simp))
apply (rule equalityI)