src/HOL/HOLCF/Sprod.thy
changeset 67312 0d25e02759b7
parent 62175 8ffc4d0e652d
--- a/src/HOL/HOLCF/Sprod.thy	Mon Jan 01 21:17:28 2018 +0100
+++ b/src/HOL/HOLCF/Sprod.thy	Mon Jan 01 23:07:24 2018 +0100
@@ -6,20 +6,21 @@
 section \<open>The type of strict products\<close>
 
 theory Sprod
-imports Cfun
+  imports Cfun
 begin
 
 default_sort pcpo
 
+
 subsection \<open>Definition of strict product type\<close>
 
 definition "sprod = {p::'a \<times> 'b. p = \<bottom> \<or> (fst p \<noteq> \<bottom> \<and> snd p \<noteq> \<bottom>)}"
 
 pcpodef ('a, 'b) sprod  ("(_ \<otimes>/ _)" [21,20] 20) = "sprod :: ('a \<times> 'b) set"
-  unfolding sprod_def by simp_all
+  by (simp_all add: sprod_def)
 
 instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
-by (rule typedef_chfin [OF type_definition_sprod below_sprod_def])
+  by (rule typedef_chfin [OF type_definition_sprod below_sprod_def])
 
 type_notation (ASCII)
   sprod  (infixr "**" 20)
@@ -27,39 +28,34 @@
 
 subsection \<open>Definitions of constants\<close>
 
-definition
-  sfst :: "('a ** 'b) \<rightarrow> 'a" where
-  "sfst = (\<Lambda> p. fst (Rep_sprod p))"
+definition sfst :: "('a ** 'b) \<rightarrow> 'a"
+  where "sfst = (\<Lambda> p. fst (Rep_sprod p))"
 
-definition
-  ssnd :: "('a ** 'b) \<rightarrow> 'b" where
-  "ssnd = (\<Lambda> p. snd (Rep_sprod p))"
+definition ssnd :: "('a ** 'b) \<rightarrow> 'b"
+  where "ssnd = (\<Lambda> p. snd (Rep_sprod p))"
 
-definition
-  spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)" where
-  "spair = (\<Lambda> a b. Abs_sprod (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b))"
+definition spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)"
+  where "spair = (\<Lambda> a b. Abs_sprod (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b))"
 
-definition
-  ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c" where
-  "ssplit = (\<Lambda> f p. seq\<cdot>p\<cdot>(f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))"
+definition ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c"
+  where "ssplit = (\<Lambda> f p. seq\<cdot>p\<cdot>(f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))"
 
-syntax
-  "_stuple" :: "[logic, args] \<Rightarrow> logic"  ("(1'(:_,/ _:'))")
+syntax "_stuple" :: "[logic, args] \<Rightarrow> logic"  ("(1'(:_,/ _:'))")
+translations
+  "(:x, y, z:)" \<rightleftharpoons> "(:x, (:y, z:):)"
+  "(:x, y:)" \<rightleftharpoons> "CONST spair\<cdot>x\<cdot>y"
 
 translations
-  "(:x, y, z:)" == "(:x, (:y, z:):)"
-  "(:x, y:)"    == "CONST spair\<cdot>x\<cdot>y"
+  "\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" \<rightleftharpoons> "CONST ssplit\<cdot>(\<Lambda> x y. t)"
 
-translations
-  "\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" == "CONST ssplit\<cdot>(\<Lambda> x y. t)"
 
 subsection \<open>Case analysis\<close>
 
 lemma spair_sprod: "(seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b) \<in> sprod"
-by (simp add: sprod_def seq_conv_if)
+  by (simp add: sprod_def seq_conv_if)
 
 lemma Rep_sprod_spair: "Rep_sprod (:a, b:) = (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b)"
-by (simp add: spair_def cont_Abs_sprod Abs_sprod_inverse spair_sprod)
+  by (simp add: spair_def cont_Abs_sprod Abs_sprod_inverse spair_sprod)
 
 lemmas Rep_sprod_simps =
   Rep_sprod_inject [symmetric] below_sprod_def
@@ -68,144 +64,139 @@
 
 lemma sprodE [case_names bottom spair, cases type: sprod]:
   obtains "p = \<bottom>" | x y where "p = (:x, y:)" and "x \<noteq> \<bottom>" and "y \<noteq> \<bottom>"
-using Rep_sprod [of p] by (auto simp add: sprod_def Rep_sprod_simps)
+  using Rep_sprod [of p] by (auto simp add: sprod_def Rep_sprod_simps)
 
 lemma sprod_induct [case_names bottom spair, induct type: sprod]:
   "\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x"
-by (cases x, simp_all)
+  by (cases x) simp_all
+
 
 subsection \<open>Properties of \emph{spair}\<close>
 
 lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>"
-by (simp add: Rep_sprod_simps)
+  by (simp add: Rep_sprod_simps)
 
 lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>"
-by (simp add: Rep_sprod_simps)
+  by (simp add: Rep_sprod_simps)
 
-lemma spair_bottom_iff [simp]: "((:x, y:) = \<bottom>) = (x = \<bottom> \<or> y = \<bottom>)"
-by (simp add: Rep_sprod_simps seq_conv_if)
+lemma spair_bottom_iff [simp]: "(:x, y:) = \<bottom> \<longleftrightarrow> x = \<bottom> \<or> y = \<bottom>"
+  by (simp add: Rep_sprod_simps seq_conv_if)
 
-lemma spair_below_iff:
-  "((:a, b:) \<sqsubseteq> (:c, d:)) = (a = \<bottom> \<or> b = \<bottom> \<or> (a \<sqsubseteq> c \<and> b \<sqsubseteq> d))"
-by (simp add: Rep_sprod_simps seq_conv_if)
+lemma spair_below_iff: "(:a, b:) \<sqsubseteq> (:c, d:) \<longleftrightarrow> a = \<bottom> \<or> b = \<bottom> \<or> (a \<sqsubseteq> c \<and> b \<sqsubseteq> d)"
+  by (simp add: Rep_sprod_simps seq_conv_if)
 
-lemma spair_eq_iff:
-  "((:a, b:) = (:c, d:)) =
-    (a = c \<and> b = d \<or> (a = \<bottom> \<or> b = \<bottom>) \<and> (c = \<bottom> \<or> d = \<bottom>))"
-by (simp add: Rep_sprod_simps seq_conv_if)
+lemma spair_eq_iff: "(:a, b:) = (:c, d:) \<longleftrightarrow> a = c \<and> b = d \<or> (a = \<bottom> \<or> b = \<bottom>) \<and> (c = \<bottom> \<or> d = \<bottom>)"
+  by (simp add: Rep_sprod_simps seq_conv_if)
 
 lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>"
-by simp
+  by simp
 
 lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>"
-by simp
+  by simp
 
 lemma spair_defined: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>"
-by simp
+  by simp
 
 lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>"
-by simp
+  by simp
 
-lemma spair_below:
-  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) = (x \<sqsubseteq> a \<and> y \<sqsubseteq> b)"
-by (simp add: spair_below_iff)
+lemma spair_below: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) \<longleftrightarrow> x \<sqsubseteq> a \<and> y \<sqsubseteq> b"
+  by (simp add: spair_below_iff)
 
-lemma spair_eq:
-  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ((:x, y:) = (:a, b:)) = (x = a \<and> y = b)"
-by (simp add: spair_eq_iff)
+lemma spair_eq: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) = (:a, b:) \<longleftrightarrow> x = a \<and> y = b"
+  by (simp add: spair_eq_iff)
 
-lemma spair_inject:
-  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; (:x, y:) = (:a, b:)\<rbrakk> \<Longrightarrow> x = a \<and> y = b"
-by (rule spair_eq [THEN iffD1])
+lemma spair_inject: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) = (:a, b:) \<Longrightarrow> x = a \<and> y = b"
+  by (rule spair_eq [THEN iffD1])
 
 lemma inst_sprod_pcpo2: "\<bottom> = (:\<bottom>, \<bottom>:)"
-by simp
+  by simp
 
 lemma sprodE2: "(\<And>x y. p = (:x, y:) \<Longrightarrow> Q) \<Longrightarrow> Q"
-by (cases p, simp only: inst_sprod_pcpo2, simp)
+  by (cases p) (simp only: inst_sprod_pcpo2, simp)
+
 
 subsection \<open>Properties of \emph{sfst} and \emph{ssnd}\<close>
 
 lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>"
-by (simp add: sfst_def cont_Rep_sprod Rep_sprod_strict)
+  by (simp add: sfst_def cont_Rep_sprod Rep_sprod_strict)
 
 lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>"
-by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_strict)
+  by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_strict)
 
 lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x"
-by (simp add: sfst_def cont_Rep_sprod Rep_sprod_spair)
+  by (simp add: sfst_def cont_Rep_sprod Rep_sprod_spair)
 
 lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y"
-by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_spair)
+  by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_spair)
 
-lemma sfst_bottom_iff [simp]: "(sfst\<cdot>p = \<bottom>) = (p = \<bottom>)"
-by (cases p, simp_all)
+lemma sfst_bottom_iff [simp]: "sfst\<cdot>p = \<bottom> \<longleftrightarrow> p = \<bottom>"
+  by (cases p) simp_all
 
-lemma ssnd_bottom_iff [simp]: "(ssnd\<cdot>p = \<bottom>) = (p = \<bottom>)"
-by (cases p, simp_all)
+lemma ssnd_bottom_iff [simp]: "ssnd\<cdot>p = \<bottom> \<longleftrightarrow> p = \<bottom>"
+  by (cases p) simp_all
 
 lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>"
-by simp
+  by simp
 
 lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>"
-by simp
+  by simp
 
 lemma spair_sfst_ssnd: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p"
-by (cases p, simp_all)
+  by (cases p) simp_all
 
-lemma below_sprod: "(x \<sqsubseteq> y) = (sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y)"
-by (simp add: Rep_sprod_simps sfst_def ssnd_def cont_Rep_sprod)
+lemma below_sprod: "x \<sqsubseteq> y \<longleftrightarrow> sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y"
+  by (simp add: Rep_sprod_simps sfst_def ssnd_def cont_Rep_sprod)
 
-lemma eq_sprod: "(x = y) = (sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y)"
-by (auto simp add: po_eq_conv below_sprod)
+lemma eq_sprod: "x = y \<longleftrightarrow> sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y"
+  by (auto simp add: po_eq_conv below_sprod)
 
 lemma sfst_below_iff: "sfst\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:y, ssnd\<cdot>x:)"
-apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp)
-apply (simp add: below_sprod)
-done
+  by (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp, simp add: below_sprod)
 
 lemma ssnd_below_iff: "ssnd\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:sfst\<cdot>x, y:)"
-apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp)
-apply (simp add: below_sprod)
-done
+  by (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp, simp add: below_sprod)
+
 
 subsection \<open>Compactness\<close>
 
 lemma compact_sfst: "compact x \<Longrightarrow> compact (sfst\<cdot>x)"
-by (rule compactI, simp add: sfst_below_iff)
+  by (rule compactI) (simp add: sfst_below_iff)
 
 lemma compact_ssnd: "compact x \<Longrightarrow> compact (ssnd\<cdot>x)"
-by (rule compactI, simp add: ssnd_below_iff)
+  by (rule compactI) (simp add: ssnd_below_iff)
 
-lemma compact_spair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (:x, y:)"
-by (rule compact_sprod, simp add: Rep_sprod_spair seq_conv_if)
+lemma compact_spair: "compact x \<Longrightarrow> compact y \<Longrightarrow> compact (:x, y:)"
+  by (rule compact_sprod) (simp add: Rep_sprod_spair seq_conv_if)
 
-lemma compact_spair_iff:
-  "compact (:x, y:) = (x = \<bottom> \<or> y = \<bottom> \<or> (compact x \<and> compact y))"
-apply (safe elim!: compact_spair)
-apply (drule compact_sfst, simp)
-apply (drule compact_ssnd, simp)
-apply simp
-apply simp
-done
+lemma compact_spair_iff: "compact (:x, y:) \<longleftrightarrow> x = \<bottom> \<or> y = \<bottom> \<or> (compact x \<and> compact y)"
+  apply (safe elim!: compact_spair)
+     apply (drule compact_sfst, simp)
+    apply (drule compact_ssnd, simp)
+   apply simp
+  apply simp
+  done
+
 
 subsection \<open>Properties of \emph{ssplit}\<close>
 
 lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>"
-by (simp add: ssplit_def)
+  by (simp add: ssplit_def)
 
-lemma ssplit2 [simp]: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y"
-by (simp add: ssplit_def)
+lemma ssplit2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y"
+  by (simp add: ssplit_def)
 
 lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z"
-by (cases z, simp_all)
+  by (cases z) simp_all
+
 
 subsection \<open>Strict product preserves flatness\<close>
 
 instance sprod :: (flat, flat) flat
 proof
   fix x y :: "'a \<otimes> 'b"
-  assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y"
+  assume "x \<sqsubseteq> y"
+  then show "x = \<bottom> \<or> x = y"
     apply (induct x, simp)
     apply (induct y, simp)
     apply (simp add: spair_below_iff flat_below_iff)