--- a/src/HOL/Basic_BNFs.thy Mon Jun 27 15:54:18 2022 +0200
+++ b/src/HOL/Basic_BNFs.thy Mon Jun 27 17:36:26 2022 +0200
@@ -2,7 +2,7 @@
Author: Dmitriy Traytel, TU Muenchen
Author: Andrei Popescu, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
- Author: Jan van Brügge
+ Author: Jan van Brügge, TU Muenchen
Copyright 2012, 2022
Registration of basic types as bounded natural functors.
@@ -190,10 +190,56 @@
by auto
qed auto
+lemma card_order_bd_fun: "card_order (natLeq +c card_suc ( |UNIV| ))"
+ by (auto simp: card_order_csum natLeq_card_order card_order_card_suc card_of_card_order_on)
+
+lemma Cinfinite_bd_fun: "Cinfinite (natLeq +c card_suc ( |UNIV| ))"
+ by (auto simp: Cinfinite_csum natLeq_Cinfinite)
+
+lemma regularCard_bd_fun: "regularCard (natLeq +c card_suc ( |UNIV| ))"
+ (is "regularCard (_ +c card_suc ?U)")
+ apply (cases "Cinfinite ?U")
+ apply (rule regularCard_csum)
+ apply (rule natLeq_Cinfinite)
+ apply (rule Cinfinite_card_suc)
+ apply assumption
+ apply (rule card_of_card_order_on)
+ apply (rule regularCard_natLeq)
+ apply (rule regularCard_card_suc)
+ apply (rule card_of_card_order_on)
+ apply assumption
+ apply (rule regularCard_ordIso[of natLeq])
+ apply (rule csum_absorb1[THEN ordIso_symmetric])
+ apply (rule natLeq_Cinfinite)
+ apply (rule card_suc_least)
+ apply (rule card_of_card_order_on)
+ apply (rule natLeq_Card_order)
+ apply (subst finite_iff_ordLess_natLeq[symmetric])
+ apply (simp add: cinfinite_def Field_card_of card_of_card_order_on)
+ apply (rule natLeq_Cinfinite)
+ apply (rule regularCard_natLeq)
+ done
+
+lemma ordLess_bd_fun: "|UNIV::'a set| <o natLeq +c card_suc ( |UNIV::'a set| )"
+ (is "_ <o (_ +c card_suc (?U :: 'a rel))")
+proof (cases "Cinfinite ?U")
+ case True
+ have "?U <o card_suc ?U" using card_of_card_order_on natLeq_card_order card_suc_greater by blast
+ also have "card_suc ?U =o natLeq +c card_suc ?U" by (rule csum_absorb2[THEN ordIso_symmetric])
+ (auto simp: True card_of_card_order_on intro!: Cinfinite_card_suc natLeq_ordLeq_cinfinite)
+ finally show ?thesis .
+next
+ case False
+ then have "?U <o natLeq"
+ by (auto simp: cinfinite_def Field_card_of card_of_card_order_on finite_iff_ordLess_natLeq[symmetric])
+ then show ?thesis
+ by (rule ordLess_ordLeq_trans[OF _ ordLeq_csum1[OF natLeq_Card_order]])
+qed
+
bnf "'a \<Rightarrow> 'b"
map: "(\<circ>)"
sets: range
- bd: "card_suc (natLeq +c |UNIV::'a set|)"
+ bd: "natLeq +c card_suc ( |UNIV::'a set| )"
rel: "rel_fun (=)"
pred: "pred_fun (\<lambda>_. True)"
proof
@@ -209,38 +255,18 @@
fix f show "range \<circ> (\<circ>) f = (`) f \<circ> range"
by (auto simp add: fun_eq_iff)
next
- show "card_order (card_suc (natLeq +c |UNIV|))"
- apply (rule card_order_card_suc)
- apply (rule card_order_csum)
- apply (rule natLeq_card_order)
- by (rule card_of_card_order_on)
+ show "card_order (natLeq +c card_suc ( |UNIV| ))"
+ by (rule card_order_bd_fun)
next
- have "Cinfinite (card_suc (natLeq +c |UNIV| ))"
- apply (rule Cinfinite_card_suc)
- apply (rule Cinfinite_csum)
- apply (rule disjI1)
- apply (rule natLeq_Cinfinite)
- apply (rule card_order_csum)
- apply (rule natLeq_card_order)
- by (rule card_of_card_order_on)
- then show "cinfinite (card_suc (natLeq +c |UNIV|))" by blast
+ show "cinfinite (natLeq +c card_suc ( |UNIV| ))"
+ by (rule Cinfinite_bd_fun[THEN conjunct1])
next
- show "regularCard (card_suc (natLeq +c |UNIV|))"
- apply (rule regular_card_suc)
- apply (rule card_order_csum)
- apply (rule natLeq_card_order)
- apply (rule card_of_card_order_on)
- apply (rule Cinfinite_csum)
- apply (rule disjI1)
- by (rule natLeq_Cinfinite)
+ show "regularCard (natLeq +c card_suc ( |UNIV| ))"
+ by (rule regularCard_bd_fun)
next
- fix f :: "'d => 'a"
- have "|range f| \<le>o | (UNIV::'d set) |" (is "_ \<le>o ?U") by (rule card_of_image)
- then have 1: "|range f| \<le>o natLeq +c ?U" using ordLeq_transitive ordLeq_csum2 card_of_Card_order by blast
- have "natLeq +c ?U <o card_suc (natLeq +c ?U)" using card_of_card_order_on card_order_csum natLeq_card_order card_suc_greater by blast
- then have "|range f| <o card_suc (natLeq +c ?U)" by (rule ordLeq_ordLess_trans[OF 1])
- then show "|range f| <o card_suc (natLeq +c ?U)"
- using ordLess_ordLeq_trans ordLeq_csum2 card_of_card_order_on Card_order_card_suc by blast
+ fix f :: "'d \<Rightarrow> 'a"
+ show "|range f| <o natLeq +c card_suc |UNIV :: 'd set|"
+ by (rule ordLeq_ordLess_trans[OF card_of_image ordLess_bd_fun])
next
fix R S
show "rel_fun (=) R OO rel_fun (=) S \<le> rel_fun (=) (R OO S)" by (auto simp: rel_fun_def)