--- a/src/HOL/NanoJava/AxSem.thy Thu Aug 09 19:33:22 2001 +0200
+++ b/src/HOL/NanoJava/AxSem.thy Thu Aug 09 20:48:57 2001 +0200
@@ -77,19 +77,20 @@
Call: "[| A |-e {P} e1 {Q}; \<forall>a. A |-e {Q a} e2 {R a};
\<forall>a p l. A |- {\<lambda>s'. \<exists>s. R a p s \<and> l = s \<and>
- s' = lupd(This\<mapsto>a)(lupd(Param\<mapsto>p)(init_locs C m s))}
+ s' = lupd(This\<mapsto>a)(lupd(Param\<mapsto>p)(reset_locs s))}
Meth C m {\<lambda>s. S (s<Res>) (set_locs l s)} |] ==>
A |-e {P} {C}e1..m(e2) {S}"
- Meth: "\<forall>D. A |- {\<lambda>s. \<exists>a. s<This> = Addr a \<and> D=obj_class s a \<and> D <=C C \<and> P s}
- Impl D m {Q} ==>
+ Meth: "\<forall>D. A |- {\<lambda>s'. \<exists>s a. s<This> = Addr a \<and> D = obj_class s a \<and> D <=C C \<and>
+ P s \<and> s' = init_locs D m s}
+ Impl (D,m) {Q} ==>
A |- {P} Meth C m {Q}"
(*\<Union>z instead of \<forall>z in the conclusion and
z restricted to type state due to limitations of the inductive package *)
- Impl: "A\<union> (\<Union>z::state. (\<lambda>(C,m). (P z C m, Impl C m, Q z C m))`ms) ||-
- (\<Union>z::state. (\<lambda>(C,m). (P z C m, body C m, Q z C m))`ms) ==>
- A ||- (\<Union>z::state. (\<lambda>(C,m). (P z C m, Impl C m, Q z C m))`ms)"
+ Impl: "\<forall>z::state. A\<union> (\<Union>z. (\<lambda>M. (P z M, Impl M, Q z M))`Ms) ||-
+ (\<lambda>M. (P z M, body M, Q z M))`Ms ==>
+ A ||- (\<lambda>M. (P z M, Impl M, Q z M))`Ms"
(* structural rules *)
@@ -99,14 +100,13 @@
ConjE: "[|A ||- C; c \<in> C |] ==> A ||- {c}"
- (* z restricted to type state due to limitations of the inductive package *)
Conseq:"[| \<forall>z::state. A |- {P' z} c {Q' z};
- \<forall>s t. (\<forall>z::state. P' z s --> Q' z t) --> (P s --> Q t) |] ==>
+ \<forall>s t. (\<forall>z. P' z s --> Q' z t) --> (P s --> Q t) |] ==>
A |- {P} c {Q }"
(* z restricted to type state due to limitations of the inductive package *)
eConseq:"[| \<forall>z::state. A |-e {P' z} c {Q' z};
- \<forall>s v t. (\<forall>z::state. P' z s --> Q' z v t) --> (P s --> Q v t) |] ==>
+ \<forall>s v t. (\<forall>z. P' z s --> Q' z v t) --> (P s --> Q v t) |] ==>
A |-e {P} c {Q }"
@@ -147,22 +147,12 @@
lemma Union: "A |\<turnstile> (\<Union>z. C z) = (\<forall>z. A |\<turnstile> C z)"
by (auto intro: hoare_ehoare.ConjI hoare_ehoare.ConjE)
-lemma Impl':
- "\<forall>z. A\<union> (\<Union>z. (\<lambda>(C,m). (P z C m, Impl C m, Q (z::state) C m))`ms) ||-
- (\<lambda>(C,m). (P z C m, body C m, Q (z::state) C m))`ms ==>
- A ||- (\<lambda>(C,m). (P z C m, Impl C m, Q (z::state) C m))`ms"
-apply (drule Union[THEN iffD2])
+lemma Impl1:
+ "\<lbrakk>\<forall>z::state. A\<union> (\<Union>z. (\<lambda>M. (P z M, Impl M, Q z M))`Ms) |\<turnstile>
+ (\<lambda>M. (P z M, body M, Q z M))`Ms;
+ M \<in> Ms\<rbrakk> \<Longrightarrow>
+ A \<turnstile> {P z M} Impl M {Q z M}"
apply (drule hoare_ehoare.Impl)
-apply (drule Union[THEN iffD1])
-apply (erule spec)
-done
-
-lemma Impl1:
- "\<lbrakk>\<forall>z. A\<union> (\<Union>z. (\<lambda>(C,m). (P z C m, Impl C m, Q (z::state) C m))`ms) ||-
- (\<lambda>(C,m). (P z C m, body C m, Q (z::state) C m))`ms;
- (C,m)\<in> ms\<rbrakk> \<Longrightarrow>
- A |- {P z C m} Impl C m {Q (z::state) C m}"
-apply (drule Impl')
apply (erule Weaken)
apply (auto del: image_eqI intro: rev_image_eqI)
done