src/HOL/Fun_Def.thy
changeset 55085 0e8e4dc55866
parent 54407 e95831757903
child 55466 786edc984c98
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Fun_Def.thy	Mon Jan 20 21:32:41 2014 +0100
@@ -0,0 +1,319 @@
+(*  Title:      HOL/Fun_Def.thy
+    Author:     Alexander Krauss, TU Muenchen
+*)
+
+header {* Function Definitions and Termination Proofs *}
+
+theory Fun_Def
+imports Partial_Function SAT
+keywords "function" "termination" :: thy_goal and "fun" "fun_cases" :: thy_decl
+begin
+
+subsection {* Definitions with default value *}
+
+definition
+  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
+  "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
+
+lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
+  by (simp add: theI' THE_default_def)
+
+lemma THE_default1_equality:
+    "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
+  by (simp add: the1_equality THE_default_def)
+
+lemma THE_default_none:
+    "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
+  by (simp add:THE_default_def)
+
+
+lemma fundef_ex1_existence:
+  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+  assumes ex1: "\<exists>!y. G x y"
+  shows "G x (f x)"
+  apply (simp only: f_def)
+  apply (rule THE_defaultI')
+  apply (rule ex1)
+  done
+
+lemma fundef_ex1_uniqueness:
+  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+  assumes ex1: "\<exists>!y. G x y"
+  assumes elm: "G x (h x)"
+  shows "h x = f x"
+  apply (simp only: f_def)
+  apply (rule THE_default1_equality [symmetric])
+   apply (rule ex1)
+  apply (rule elm)
+  done
+
+lemma fundef_ex1_iff:
+  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+  assumes ex1: "\<exists>!y. G x y"
+  shows "(G x y) = (f x = y)"
+  apply (auto simp:ex1 f_def THE_default1_equality)
+  apply (rule THE_defaultI')
+  apply (rule ex1)
+  done
+
+lemma fundef_default_value:
+  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+  assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
+  assumes "\<not> D x"
+  shows "f x = d x"
+proof -
+  have "\<not>(\<exists>y. G x y)"
+  proof
+    assume "\<exists>y. G x y"
+    hence "D x" using graph ..
+    with `\<not> D x` show False ..
+  qed
+  hence "\<not>(\<exists>!y. G x y)" by blast
+
+  thus ?thesis
+    unfolding f_def
+    by (rule THE_default_none)
+qed
+
+definition in_rel_def[simp]:
+  "in_rel R x y == (x, y) \<in> R"
+
+lemma wf_in_rel:
+  "wf R \<Longrightarrow> wfP (in_rel R)"
+  by (simp add: wfP_def)
+
+ML_file "Tools/Function/function_core.ML"
+ML_file "Tools/Function/sum_tree.ML"
+ML_file "Tools/Function/mutual.ML"
+ML_file "Tools/Function/pattern_split.ML"
+ML_file "Tools/Function/relation.ML"
+ML_file "Tools/Function/function_elims.ML"
+
+method_setup relation = {*
+  Args.term >> (fn t => fn ctxt => SIMPLE_METHOD' (Function_Relation.relation_infer_tac ctxt t))
+*} "prove termination using a user-specified wellfounded relation"
+
+ML_file "Tools/Function/function.ML"
+ML_file "Tools/Function/pat_completeness.ML"
+
+method_setup pat_completeness = {*
+  Scan.succeed (SIMPLE_METHOD' o Pat_Completeness.pat_completeness_tac)
+*} "prove completeness of datatype patterns"
+
+ML_file "Tools/Function/fun.ML"
+ML_file "Tools/Function/induction_schema.ML"
+
+method_setup induction_schema = {*
+  Scan.succeed (RAW_METHOD o Induction_Schema.induction_schema_tac)
+*} "prove an induction principle"
+
+setup {*
+  Function.setup
+  #> Function_Fun.setup
+*}
+
+subsection {* Measure Functions *}
+
+inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
+where is_measure_trivial: "is_measure f"
+
+ML_file "Tools/Function/measure_functions.ML"
+setup MeasureFunctions.setup
+
+lemma measure_size[measure_function]: "is_measure size"
+by (rule is_measure_trivial)
+
+lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
+by (rule is_measure_trivial)
+lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
+by (rule is_measure_trivial)
+
+ML_file "Tools/Function/lexicographic_order.ML"
+
+method_setup lexicographic_order = {*
+  Method.sections clasimp_modifiers >>
+  (K (SIMPLE_METHOD o Lexicographic_Order.lexicographic_order_tac false))
+*} "termination prover for lexicographic orderings"
+
+setup Lexicographic_Order.setup
+
+
+subsection {* Congruence Rules *}
+
+lemma let_cong [fundef_cong]:
+  "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
+  unfolding Let_def by blast
+
+lemmas [fundef_cong] =
+  if_cong image_cong INT_cong UN_cong
+  bex_cong ball_cong imp_cong Option.map_cong Option.bind_cong
+
+lemma split_cong [fundef_cong]:
+  "(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
+    \<Longrightarrow> split f p = split g q"
+  by (auto simp: split_def)
+
+lemma comp_cong [fundef_cong]:
+  "f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
+  unfolding o_apply .
+
+subsection {* Simp rules for termination proofs *}
+
+lemma termination_basic_simps[termination_simp]:
+  "x < (y::nat) \<Longrightarrow> x < y + z"
+  "x < z \<Longrightarrow> x < y + z"
+  "x \<le> y \<Longrightarrow> x \<le> y + (z::nat)"
+  "x \<le> z \<Longrightarrow> x \<le> y + (z::nat)"
+  "x < y \<Longrightarrow> x \<le> (y::nat)"
+by arith+
+
+declare le_imp_less_Suc[termination_simp]
+
+lemma prod_size_simp[termination_simp]:
+  "prod_size f g p = f (fst p) + g (snd p) + Suc 0"
+by (induct p) auto
+
+subsection {* Decomposition *}
+
+lemma less_by_empty:
+  "A = {} \<Longrightarrow> A \<subseteq> B"
+and  union_comp_emptyL:
+  "\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}"
+and union_comp_emptyR:
+  "\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}"
+and wf_no_loop:
+  "R O R = {} \<Longrightarrow> wf R"
+by (auto simp add: wf_comp_self[of R])
+
+
+subsection {* Reduction Pairs *}
+
+definition
+  "reduction_pair P = (wf (fst P) \<and> fst P O snd P \<subseteq> fst P)"
+
+lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
+unfolding reduction_pair_def by auto
+
+lemma reduction_pair_lemma:
+  assumes rp: "reduction_pair P"
+  assumes "R \<subseteq> fst P"
+  assumes "S \<subseteq> snd P"
+  assumes "wf S"
+  shows "wf (R \<union> S)"
+proof -
+  from rp `S \<subseteq> snd P` have "wf (fst P)" "fst P O S \<subseteq> fst P"
+    unfolding reduction_pair_def by auto
+  with `wf S` have "wf (fst P \<union> S)"
+    by (auto intro: wf_union_compatible)
+  moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto
+  ultimately show ?thesis by (rule wf_subset)
+qed
+
+definition
+  "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
+
+lemma rp_inv_image_rp:
+  "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
+  unfolding reduction_pair_def rp_inv_image_def split_def
+  by force
+
+
+subsection {* Concrete orders for SCNP termination proofs *}
+
+definition "pair_less = less_than <*lex*> less_than"
+definition "pair_leq = pair_less^="
+definition "max_strict = max_ext pair_less"
+definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
+definition "min_strict = min_ext pair_less"
+definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
+
+lemma wf_pair_less[simp]: "wf pair_less"
+  by (auto simp: pair_less_def)
+
+text {* Introduction rules for @{text pair_less}/@{text pair_leq} *}
+lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
+  and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
+  and pair_lessI1: "a < b  \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
+  and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
+  unfolding pair_leq_def pair_less_def by auto
+
+text {* Introduction rules for max *}
+lemma smax_emptyI:
+  "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict"
+  and smax_insertI:
+  "\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict"
+  and wmax_emptyI:
+  "finite X \<Longrightarrow> ({}, X) \<in> max_weak"
+  and wmax_insertI:
+  "\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak"
+unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases)
+
+text {* Introduction rules for min *}
+lemma smin_emptyI:
+  "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict"
+  and smin_insertI:
+  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
+  and wmin_emptyI:
+  "(X, {}) \<in> min_weak"
+  and wmin_insertI:
+  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak"
+by (auto simp: min_strict_def min_weak_def min_ext_def)
+
+text {* Reduction Pairs *}
+
+lemma max_ext_compat:
+  assumes "R O S \<subseteq> R"
+  shows "max_ext R O (max_ext S \<union> {({},{})}) \<subseteq> max_ext R"
+using assms
+apply auto
+apply (elim max_ext.cases)
+apply rule
+apply auto[3]
+apply (drule_tac x=xa in meta_spec)
+apply simp
+apply (erule bexE)
+apply (drule_tac x=xb in meta_spec)
+by auto
+
+lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
+  unfolding max_strict_def max_weak_def
+apply (intro reduction_pairI max_ext_wf)
+apply simp
+apply (rule max_ext_compat)
+by (auto simp: pair_less_def pair_leq_def)
+
+lemma min_ext_compat:
+  assumes "R O S \<subseteq> R"
+  shows "min_ext R O  (min_ext S \<union> {({},{})}) \<subseteq> min_ext R"
+using assms
+apply (auto simp: min_ext_def)
+apply (drule_tac x=ya in bspec, assumption)
+apply (erule bexE)
+apply (drule_tac x=xc in bspec)
+apply assumption
+by auto
+
+lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
+  unfolding min_strict_def min_weak_def
+apply (intro reduction_pairI min_ext_wf)
+apply simp
+apply (rule min_ext_compat)
+by (auto simp: pair_less_def pair_leq_def)
+
+
+subsection {* Tool setup *}
+
+ML_file "Tools/Function/termination.ML"
+ML_file "Tools/Function/scnp_solve.ML"
+ML_file "Tools/Function/scnp_reconstruct.ML"
+ML_file "Tools/Function/fun_cases.ML"
+
+setup ScnpReconstruct.setup
+
+ML_val -- "setup inactive"
+{*
+  Context.theory_map (Function_Common.set_termination_prover
+    (ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS]))
+*}
+
+end