--- a/src/HOL/FunDef.thy Thu Apr 26 16:24:13 2007 +0200
+++ b/src/HOL/FunDef.thy Thu Apr 26 16:39:10 2007 +0200
@@ -1,72 +1,77 @@
(* Title: HOL/FunDef.thy
ID: $Id$
Author: Alexander Krauss, TU Muenchen
+*)
-A package for general recursive function definitions.
-*)
+header {* General recursive function definitions *}
theory FunDef
-imports Accessible_Part
-uses
-("Tools/function_package/sum_tools.ML")
-("Tools/function_package/fundef_common.ML")
-("Tools/function_package/fundef_lib.ML")
-("Tools/function_package/inductive_wrap.ML")
-("Tools/function_package/context_tree.ML")
-("Tools/function_package/fundef_core.ML")
-("Tools/function_package/mutual.ML")
-("Tools/function_package/pattern_split.ML")
-("Tools/function_package/fundef_package.ML")
-("Tools/function_package/auto_term.ML")
+imports Accessible_Part
+uses
+ ("Tools/function_package/sum_tools.ML")
+ ("Tools/function_package/fundef_common.ML")
+ ("Tools/function_package/fundef_lib.ML")
+ ("Tools/function_package/inductive_wrap.ML")
+ ("Tools/function_package/context_tree.ML")
+ ("Tools/function_package/fundef_core.ML")
+ ("Tools/function_package/mutual.ML")
+ ("Tools/function_package/pattern_split.ML")
+ ("Tools/function_package/fundef_package.ML")
+ ("Tools/function_package/auto_term.ML")
begin
-section {* Definitions with default value *}
+text {* Definitions with default value. *}
definition
THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
"THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
- by (simp add:theI' THE_default_def)
+ by (simp add: theI' THE_default_def)
-lemma THE_default1_equality:
- "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
- by (simp add:the1_equality THE_default_def)
+lemma THE_default1_equality:
+ "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
+ by (simp add: the1_equality THE_default_def)
lemma THE_default_none:
- "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
-by (simp add:THE_default_def)
+ "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
+ by (simp add:THE_default_def)
lemma fundef_ex1_existence:
-assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
-assumes ex1: "\<exists>!y. G x y"
-shows "G x (f x)"
- by (simp only:f_def, rule THE_defaultI', rule ex1)
-
-
-
-
+ assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+ assumes ex1: "\<exists>!y. G x y"
+ shows "G x (f x)"
+ apply (simp only: f_def)
+ apply (rule THE_defaultI')
+ apply (rule ex1)
+ done
lemma fundef_ex1_uniqueness:
-assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
-assumes ex1: "\<exists>!y. G x y"
-assumes elm: "G x (h x)"
-shows "h x = f x"
- by (simp only:f_def, rule THE_default1_equality[symmetric], rule ex1, rule elm)
+ assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+ assumes ex1: "\<exists>!y. G x y"
+ assumes elm: "G x (h x)"
+ shows "h x = f x"
+ apply (simp only: f_def)
+ apply (rule THE_default1_equality [symmetric])
+ apply (rule ex1)
+ apply (rule elm)
+ done
lemma fundef_ex1_iff:
-assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
-assumes ex1: "\<exists>!y. G x y"
-shows "(G x y) = (f x = y)"
+ assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+ assumes ex1: "\<exists>!y. G x y"
+ shows "(G x y) = (f x = y)"
apply (auto simp:ex1 f_def THE_default1_equality)
- by (rule THE_defaultI', rule ex1)
+ apply (rule THE_defaultI')
+ apply (rule ex1)
+ done
lemma fundef_default_value:
-assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
-assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
-assumes "\<not> D x"
-shows "f x = d x"
+ assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
+ assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
+ assumes "\<not> D x"
+ shows "f x = d x"
proof -
have "\<not>(\<exists>y. G x y)"
proof
@@ -75,14 +80,13 @@
with `\<not> D x` show False ..
qed
hence "\<not>(\<exists>!y. G x y)" by blast
-
+
thus ?thesis
unfolding f_def
by (rule THE_default_none)
qed
-
use "Tools/function_package/sum_tools.ML"
use "Tools/function_package/fundef_common.ML"
use "Tools/function_package/fundef_lib.ML"
@@ -98,20 +102,20 @@
lemma let_cong:
"M = N ==> (!!x. x = N ==> f x = g x) ==> Let M f = Let N g"
- by (unfold Let_def) blast
+ unfolding Let_def by blast
-lemmas [fundef_cong] =
+lemmas [fundef_cong] =
let_cong if_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong
-lemma split_cong[fundef_cong]:
- "\<lbrakk> \<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y; p = q \<rbrakk>
- \<Longrightarrow> split f p = split g q"
- by (auto simp:split_def)
+lemma split_cong [fundef_cong]:
+ "\<lbrakk> \<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y; p = q \<rbrakk>
+ \<Longrightarrow> split f p = split g q"
+ by (auto simp: split_def)
-lemma comp_cong[fundef_cong]:
+lemma comp_cong [fundef_cong]:
"f (g x) = f' (g' x')
- ==> (f o g) x = (f' o g') x'"
-unfolding o_apply .
+ ==> (f o g) x = (f' o g') x'"
+ unfolding o_apply .
end