src/HOL/ex/Commutative_Ring_Complete.thy
changeset 17378 105519771c67
child 17388 495c799df31d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Commutative_Ring_Complete.thy	Wed Sep 14 17:25:52 2005 +0200
@@ -0,0 +1,384 @@
+(*  ID:         $Id$
+    Author:     Bernhard Haeupler
+
+  This theory is about the relative completeness of the tactic 
+  As long as the reified atomic polynomials of type 'a pol 
+  are in normal form, the cring method is complete *)	
+
+theory Commutative_Ring_Complete
+imports Main
+begin
+	
+  (* Fromalization of normal form *)
+consts isnorm :: "('a::{comm_ring,recpower}) pol \<Rightarrow> bool"
+recdef isnorm "measure size"
+  "isnorm (Pc c) = True"
+  "isnorm (Pinj i (Pc c)) = False"
+  "isnorm (Pinj i (Pinj j Q)) = False"
+  "isnorm (Pinj 0 P) = False"
+  "isnorm (Pinj i (PX Q1 j Q2)) = isnorm (PX Q1 j Q2)"
+  "isnorm (PX P 0 Q) = False"
+  "isnorm (PX (Pc c) i Q) = (c \<noteq> 0 & isnorm Q)"
+  "isnorm (PX (PX P1 j (Pc c)) i Q) = (c\<noteq>0 \<and> isnorm(PX P1 j (Pc c))\<and>isnorm Q)"
+  "isnorm (PX P i Q) = (isnorm P \<and> isnorm Q)"
+
+(* Some helpful lemmas *)
+lemma norm_Pinj_0_False:"isnorm (Pinj 0 P) = False"
+by(cases P, auto)
+
+lemma norm_PX_0_False:"isnorm (PX (Pc 0) i Q) = False"
+by(cases i, auto)
+
+lemma norm_Pinj:"isnorm (Pinj i Q) \<Longrightarrow> isnorm Q"
+by(cases i,simp add: norm_Pinj_0_False norm_PX_0_False,cases Q) auto
+
+lemma norm_PX2:"isnorm (PX P i Q) \<Longrightarrow> isnorm Q"
+by(cases i, auto, cases P, auto, case_tac pol2, auto)
+
+lemma norm_PX1:"isnorm (PX P i Q) \<Longrightarrow> isnorm P"
+by(cases i, auto, cases P, auto, case_tac pol2, auto)
+
+lemma mkPinj_cn:"\<lbrakk>y~=0; isnorm Q\<rbrakk> \<Longrightarrow> isnorm (mkPinj y Q)" 
+apply(auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split)
+apply(case_tac nat, auto simp add: norm_Pinj_0_False)
+by(case_tac pol, auto) (case_tac y, auto)
+
+lemma norm_PXtrans: 
+  assumes A:"isnorm (PX P x Q)" and "isnorm Q2" 
+  shows "isnorm (PX P x Q2)"
+proof(cases P)
+  case (PX p1 y p2) from prems show ?thesis by(cases x, auto, cases p2, auto)
+next
+  case Pc from prems show ?thesis by(cases x, auto)
+next
+  case Pinj from prems show ?thesis by(cases x, auto)
+qed
+ 
+
+lemma norm_PXtrans2: assumes A:"isnorm (PX P x Q)" and "isnorm Q2" shows "isnorm (PX P (Suc (n+x)) Q2)"
+proof(cases P)
+  case (PX p1 y p2)
+  from prems show ?thesis by(cases x, auto, cases p2, auto)
+next
+  case Pc
+  from prems show ?thesis by(cases x, auto)
+next
+  case Pinj
+  from prems show ?thesis by(cases x, auto)
+qed
+
+    (* mkPX conserves normalizedness (_cn)*)
+lemma mkPX_cn: 
+  assumes "x \<noteq> 0" and "isnorm P" and "isnorm Q" 
+  shows "isnorm (mkPX P x Q)"
+proof(cases P)
+  case (Pc c)
+  from prems show ?thesis by (cases x) (auto simp add: mkPinj_cn mkPX_def)
+next
+  case (Pinj i Q)
+  from prems show ?thesis by (cases x) (auto simp add: mkPinj_cn mkPX_def)
+next
+  case (PX P1 y P2)
+  from prems have Y0:"y>0" by(cases y, auto)
+  from prems have "isnorm P1" "isnorm P2" by (auto simp add: norm_PX1[of P1 y P2] norm_PX2[of P1 y P2])
+  with prems Y0 show ?thesis by (cases x, auto simp add: mkPX_def norm_PXtrans2[of P1 y _ Q _], cases P2, auto)
+qed
+
+    (* add conserves normalizedness *)
+lemma add_cn:"\<lbrakk>isnorm P; (isnorm Q)\<rbrakk> \<Longrightarrow> isnorm (add (P, Q))"
+proof(induct P Q rule: add.induct)
+  case (2 c i P2) thus ?case by (cases P2, simp_all, cases i, simp_all)
+next
+  case (3 i P2 c) thus ?case by (cases P2, simp_all, cases i, simp_all)
+next
+  case (4 c P2 i Q2)
+  from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
+  with prems show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto)
+next
+  case (5 P2 i Q2 c)
+  from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
+  with prems show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto)
+next
+  case (6 x P2 y Q2)
+  from prems have Y0:"y>0" by (cases y, auto simp add: norm_Pinj_0_False) 
+  from prems have X0:"x>0" by (cases x, auto simp add: norm_Pinj_0_False) 
+  have "x < y \<or> x = y \<or> x > y" by arith
+  moreover
+  { assume "x<y" hence "EX d. y=d+x" by arith
+    then obtain d where "y=d+x"..
+    moreover
+    note prems X0
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    with prems have "isnorm (Pinj d Q2)" by (cases d, simp, cases Q2, auto)
+    ultimately have ?case by (simp add: mkPinj_cn)}
+  moreover
+  { assume "x=y"
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by(auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    note prems Y0
+    moreover
+    ultimately have ?case by (simp add: mkPinj_cn) }
+  moreover
+  { assume "x>y" hence "EX d. x=d+y" by arith
+    then obtain d where "x=d+y"..
+    moreover
+    note prems Y0
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    with prems have "isnorm (Pinj d P2)" by (cases d, simp, cases P2, auto)
+    ultimately have ?case by (simp add: mkPinj_cn)}
+  ultimately show ?case by blast
+next
+  case (7 x P2 Q2 y R)
+  have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
+  moreover
+  { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
+  moreover
+  { assume "x=1"
+    from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (add (R, P2))" by simp
+    with prems have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
+  moreover
+  { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
+    then obtain d where X:"x=Suc (Suc d)" ..
+    from prems have NR:"isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
+    with prems NR have "isnorm( add (R, Pinj (x - 1) P2))" "isnorm(PX Q2 y R)" by simp
+    with X have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
+  ultimately show ?case by blast
+next
+  case (8 Q2 y R x P2)
+  have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
+  moreover
+  { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
+  moreover
+  { assume "x=1"
+    from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (add (R, P2))" by simp
+    with prems have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
+  moreover
+  { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
+    then obtain d where X:"x=Suc (Suc d)" ..
+    from prems have NR:"isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
+    with prems NR have "isnorm( add (R, Pinj (x - 1) P2))" "isnorm(PX Q2 y R)" by simp
+    with X have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
+  ultimately show ?case by blast
+next
+  case (9 P1 x P2 Q1 y Q2)
+  from prems have Y0:"y>0" by(cases y, auto)
+  from prems have X0:"x>0" by(cases x, auto)
+  from prems have NP1:"isnorm P1" and NP2:"isnorm P2" by (auto simp add: norm_PX1[of P1 _ P2] norm_PX2[of P1 _ P2])
+  from prems have NQ1:"isnorm Q1" and NQ2:"isnorm Q2" by (auto simp add: norm_PX1[of Q1 _ Q2] norm_PX2[of Q1 _ Q2])
+  have "y < x \<or> x = y \<or> x < y" by arith
+  moreover
+  {assume sm1:"y < x" hence "EX d. x=d+y" by arith
+    then obtain d where sm2:"x=d+y"..
+    note prems NQ1 NP1 NP2 NQ2 sm1 sm2
+    moreover
+    have "isnorm (PX P1 d (Pc 0))" 
+    proof(cases P1)
+      case (PX p1 y p2)
+      with prems show ?thesis by(cases d, simp,cases p2, auto)
+    next case Pc   from prems show ?thesis by(cases d, auto)
+    next case Pinj from prems show ?thesis by(cases d, auto)
+    qed
+    ultimately have "isnorm (add (P2, Q2))" "isnorm (add (PX P1 (x - y) (Pc 0), Q1))" by auto
+    with Y0 sm1 sm2 have ?case by (simp add: mkPX_cn)}
+  moreover
+  {assume "x=y"
+    from prems NP1 NP2 NQ1 NQ2 have "isnorm (add (P2, Q2))" "isnorm (add (P1, Q1))" by auto
+    with Y0 prems have ?case by (simp add: mkPX_cn) }
+  moreover
+  {assume sm1:"x<y" hence "EX d. y=d+x" by arith
+    then obtain d where sm2:"y=d+x"..
+    note prems NQ1 NP1 NP2 NQ2 sm1 sm2
+    moreover
+    have "isnorm (PX Q1 d (Pc 0))" 
+    proof(cases Q1)
+      case (PX p1 y p2)
+      with prems show ?thesis by(cases d, simp,cases p2, auto)
+    next case Pc   from prems show ?thesis by(cases d, auto)
+    next case Pinj from prems show ?thesis by(cases d, auto)
+    qed
+    ultimately have "isnorm (add (P2, Q2))" "isnorm (add (PX Q1 (y - x) (Pc 0), P1))" by auto
+    with X0 sm1 sm2 have ?case by (simp add: mkPX_cn)}
+  ultimately show ?case by blast
+qed(simp)
+
+    (* mul concerves normalizedness *)
+lemma mul_cn :"\<lbrakk>isnorm P; (isnorm Q)\<rbrakk> \<Longrightarrow> isnorm (mul (P, Q))"
+proof(induct P Q rule: mul.induct)
+  case (2 c i P2) thus ?case 
+    by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn)
+next
+  case (3 i P2 c) thus ?case 
+    by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn)
+next
+  case (4 c P2 i Q2)
+  from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
+  with prems show ?case 
+    by - (case_tac "c=0",simp_all,case_tac "i=0",simp_all add: mkPX_cn)
+next
+  case (5 P2 i Q2 c)
+  from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
+  with prems show ?case
+    by - (case_tac "c=0",simp_all,case_tac "i=0",simp_all add: mkPX_cn)
+next
+  case (6 x P2 y Q2)
+  have "x < y \<or> x = y \<or> x > y" by arith
+  moreover
+  { assume "x<y" hence "EX d. y=d+x" by arith
+    then obtain d where "y=d+x"..
+    moreover
+    note prems
+    moreover
+    from prems have "x>0" by (cases x, auto simp add: norm_Pinj_0_False) 
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    with prems have "isnorm (Pinj d Q2)" by (cases d, simp, cases Q2, auto) 
+    ultimately have ?case by (simp add: mkPinj_cn)}
+  moreover
+  { assume "x=y"
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by(auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    with prems have "y>0" by (cases y, auto simp add: norm_Pinj_0_False)
+    moreover
+    note prems
+    moreover
+    ultimately have ?case by (simp add: mkPinj_cn) }
+  moreover
+  { assume "x>y" hence "EX d. x=d+y" by arith
+    then obtain d where "x=d+y"..
+    moreover
+    note prems
+    moreover
+    from prems have "y>0" by (cases y, auto simp add: norm_Pinj_0_False) 
+    moreover
+    from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
+    moreover
+    with prems have "isnorm (Pinj d P2)"  by (cases d, simp, cases P2, auto)
+    ultimately have ?case by (simp add: mkPinj_cn) }
+  ultimately show ?case by blast
+next
+  case (7 x P2 Q2 y R)
+  from prems have Y0:"y>0" by(cases y, auto)
+  have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
+  moreover
+  { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
+  moreover
+  { assume "x=1"
+    from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (mul (R, P2))" "isnorm Q2" by (auto simp add: norm_PX1[of Q2 y R])
+    with Y0 prems have ?case by (simp add: mkPX_cn)}
+  moreover
+  { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
+    then obtain d where X:"x=Suc (Suc d)" ..
+    from prems have NR:"isnorm R" "isnorm Q2" by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
+    moreover
+    from prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
+    moreover
+    from prems have "isnorm (Pinj x P2)" by(cases P2, auto)
+    moreover
+    note prems
+    ultimately have "isnorm (mul (R, Pinj (x - 1) P2))" "isnorm (mul (Pinj x P2, Q2))" by auto
+    with Y0 X have ?case by (simp add: mkPX_cn)}
+  ultimately show ?case by blast
+next
+  case (8 Q2 y R x P2)
+  from prems have Y0:"y>0" by(cases y, auto)
+  have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
+  moreover
+  { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
+  moreover
+  { assume "x=1"
+    from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
+    with prems have "isnorm (mul (R, P2))" "isnorm Q2" by (auto simp add: norm_PX1[of Q2 y R])
+    with Y0 prems have ?case by (simp add: mkPX_cn) }
+  moreover
+  { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
+    then obtain d where X:"x=Suc (Suc d)" ..
+    from prems have NR:"isnorm R" "isnorm Q2" by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
+    moreover
+    from prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
+    moreover
+    from prems have "isnorm (Pinj x P2)" by(cases P2, auto)
+    moreover
+    note prems
+    ultimately have "isnorm (mul (R, Pinj (x - 1) P2))" "isnorm (mul (Pinj x P2, Q2))" by auto
+    with Y0 X have ?case by (simp add: mkPX_cn) }
+  ultimately show ?case by blast
+next
+  case (9 P1 x P2 Q1 y Q2)
+  from prems have X0:"x>0" by(cases x, auto)
+  from prems have Y0:"y>0" by(cases y, auto)
+  note prems
+  moreover
+  from prems have "isnorm P1" "isnorm P2" by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
+  moreover 
+  from prems have "isnorm Q1" "isnorm Q2" by (auto simp add: norm_PX1[of Q1 y Q2] norm_PX2[of Q1 y Q2])
+  ultimately have "isnorm (mul (P1, Q1))" "isnorm (mul (P2, Q2))" "isnorm (mul (P1, mkPinj 1 Q2))" "isnorm (mul (Q1, mkPinj 1 P2))" 
+    by (auto simp add: mkPinj_cn)
+  with prems X0 Y0 have "isnorm (mkPX (mul (P1, Q1)) (x + y) (mul (P2, Q2)))" "isnorm (mkPX (mul (P1, mkPinj (Suc 0) Q2)) x (Pc 0))"  
+    "isnorm (mkPX (mul (Q1, mkPinj (Suc 0) P2)) y (Pc 0))" 
+    by (auto simp add: mkPX_cn)
+  thus ?case by (simp add: add_cn)
+qed(simp)
+
+    (* neg conserves normalizedness *)
+lemma neg_cn: "isnorm P \<Longrightarrow> isnorm (neg P)"
+proof(induct P rule: neg.induct)
+  case (Pinj i P2)
+  from prems have "isnorm P2" by (simp add: norm_Pinj[of i P2])
+  with prems show ?case by(cases P2, auto, cases i, auto)
+next
+  case (PX P1 x P2)
+  from prems have "isnorm P2" "isnorm P1" by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
+  with prems show ?case
+  proof(cases P1)
+    case (PX p1 y p2)
+    with prems show ?thesis by(cases x, auto, cases p2, auto)
+  next
+    case Pinj
+    with prems show ?thesis by(cases x, auto)
+  qed(cases x, auto)
+qed(simp)
+
+    (* sub conserves normalizedness *)
+lemma sub_cn:"\<lbrakk>isnorm p; isnorm q\<rbrakk> \<Longrightarrow> isnorm (sub p q)"
+by (simp add: sub_def add_cn neg_cn)
+
+  (* sqr conserves normalizizedness *)
+lemma sqr_cn:"isnorm P \<Longrightarrow> isnorm (sqr P)"
+proof(induct P)
+  case (Pinj i Q)
+  from prems show ?case by(cases Q, auto simp add: mkPX_cn mkPinj_cn, cases i, auto simp add: mkPX_cn mkPinj_cn)
+next 
+  case (PX P1 x P2)
+  from prems have "x+x~=0" "isnorm P2" "isnorm P1" by (cases x,  auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
+  with prems have "isnorm (mkPX (mul (mul (Pc ((1\<Colon>'a) + (1\<Colon>'a)), P1), mkPinj (Suc 0) P2)) x (Pc (0\<Colon>'a)))"
+              and "isnorm (mkPX (sqr P1) (x + x) (sqr P2))" by( auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
+  thus ?case by( auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
+qed(simp)
+
+
+    (* pow conserves normalizedness  *)
+lemma pow_cn:"!! P. \<lbrakk>isnorm P\<rbrakk> \<Longrightarrow> isnorm (pow (P, n))"
+proof(induct n rule: nat_less_induct)
+  case (1 k)
+  show ?case 
+  proof(cases "k=0")
+    case False
+    hence K2:"k div 2 < k" by (cases k, auto)
+    from prems have "isnorm (sqr P)" by (simp add: sqr_cn)
+    with prems K2 show ?thesis by(simp add: allE[of _ "(k div 2)" _] allE[of _ "(sqr P)" _], cases k, auto simp add: mul_cn)
+  qed(simp)
+qed
+
+end
\ No newline at end of file