doc-src/TutorialI/Recdef/document/Nested2.tex
changeset 9834 109b11c4e77e
parent 9792 bbefb6ce5cb2
child 9924 3370f6aa3200
--- a/doc-src/TutorialI/Recdef/document/Nested2.tex	Mon Sep 04 21:20:14 2000 +0200
+++ b/doc-src/TutorialI/Recdef/document/Nested2.tex	Tue Sep 05 09:03:17 2000 +0200
@@ -22,14 +22,12 @@
 \begin{isamarkuptxt}%
 \noindent
 This leaves us with a trivial base case \isa{trev\ {\isacharparenleft}trev\ {\isacharparenleft}Var\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ Var\ x} and the step case
-\begin{quote}
-
+%
 \begin{isabelle}%
-{\isasymforall}t{\isachardot}\ t\ {\isasymin}\ set\ ts\ {\isasymlongrightarrow}\ trev\ {\isacharparenleft}trev\ t{\isacharparenright}\ {\isacharequal}\ t\ {\isasymLongrightarrow}\isanewline
-trev\ {\isacharparenleft}trev\ {\isacharparenleft}App\ f\ ts{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ App\ f\ ts
+\ \ \ \ \ {\isasymforall}t{\isachardot}\ t\ {\isasymin}\ set\ ts\ {\isasymlongrightarrow}\ trev\ {\isacharparenleft}trev\ t{\isacharparenright}\ {\isacharequal}\ t\ {\isasymLongrightarrow}\isanewline
+\ \ \ \ \ trev\ {\isacharparenleft}trev\ {\isacharparenleft}App\ f\ ts{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ App\ f\ ts%
 \end{isabelle}%
 
-\end{quote}
 both of which are solved by simplification:%
 \end{isamarkuptxt}%
 \isacommand{by}{\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}rev{\isacharunderscore}map\ sym{\isacharbrackleft}OF\ map{\isacharunderscore}compose{\isacharbrackright}{\isacharparenright}%
@@ -64,14 +62,12 @@
 \isacommand{recdef} would try to prove the unprovable \isa{size\ t\ {\isacharless}\ Suc\ {\isacharparenleft}term{\isacharunderscore}list{\isacharunderscore}size\ ts{\isacharparenright}}, without any assumption about \isa{t}.  Therefore
 \isacommand{recdef} has been supplied with the congruence theorem
 \isa{map{\isacharunderscore}cong}:
-\begin{quote}
-
+%
 \begin{isabelle}%
-{\isasymlbrakk}xs\ {\isacharequal}\ ys{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ set\ ys\ {\isasymLongrightarrow}\ f\ x\ {\isacharequal}\ g\ x{\isasymrbrakk}\isanewline
-{\isasymLongrightarrow}\ map\ f\ xs\ {\isacharequal}\ map\ g\ ys
+\ \ \ \ \ {\isasymlbrakk}xs\ {\isacharequal}\ ys{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ set\ ys\ {\isasymLongrightarrow}\ f\ x\ {\isacharequal}\ g\ x{\isasymrbrakk}\isanewline
+\ \ \ \ \ {\isasymLongrightarrow}\ map\ f\ xs\ {\isacharequal}\ map\ g\ ys%
 \end{isabelle}%
 
-\end{quote}
 Its second premise expresses (indirectly) that the second argument of
 \isa{map} is only applied to elements of its third argument. Congruence
 rules for other higher-order functions on lists would look very similar but