src/HOL/Analysis/T1_Spaces.thy
changeset 69874 11065b70407d
child 69939 812ce526da33
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/T1_Spaces.thy	Thu Mar 07 14:08:05 2019 +0000
@@ -0,0 +1,201 @@
+section\<open>T1 spaces with equivalences to many naturally "nice" properties. \<close>
+
+theory T1_Spaces
+imports Function_Topology 
+begin
+
+definition t1_space where
+ "t1_space X \<equiv> \<forall>x \<in> topspace X. \<forall>y \<in> topspace X. x\<noteq>y \<longrightarrow> (\<exists>U. openin X U \<and> x \<in> U \<and> y \<notin> U)"
+
+lemma t1_space_expansive:
+   "\<lbrakk>topspace Y = topspace X; \<And>U. openin X U \<Longrightarrow> openin Y U\<rbrakk> \<Longrightarrow> t1_space X \<Longrightarrow> t1_space Y"
+  by (metis t1_space_def)
+
+lemma t1_space_alt:
+   "t1_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. \<forall>y \<in> topspace X. x\<noteq>y \<longrightarrow> (\<exists>U. closedin X U \<and> x \<in> U \<and> y \<notin> U))"
+ by (metis DiffE DiffI closedin_def openin_closedin_eq t1_space_def)
+
+lemma t1_space_empty: "topspace X = {} \<Longrightarrow> t1_space X"
+  by (simp add: t1_space_def)
+
+lemma t1_space_derived_set_of_singleton:
+  "t1_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. X derived_set_of {x} = {})"
+  apply (simp add: t1_space_def derived_set_of_def, safe)
+   apply (metis openin_topspace)
+  by force
+
+lemma t1_space_derived_set_of_finite:
+   "t1_space X \<longleftrightarrow> (\<forall>S. finite S \<longrightarrow> X derived_set_of S = {})"
+proof (intro iffI allI impI)
+  fix S :: "'a set"
+  assume "finite S"
+  then have fin: "finite ((\<lambda>x. {x}) ` (topspace X \<inter> S))"
+    by blast
+  assume "t1_space X"
+  then have "X derived_set_of (\<Union>x \<in> topspace X \<inter> S. {x}) = {}"
+    unfolding derived_set_of_Union [OF fin]
+    by (auto simp: t1_space_derived_set_of_singleton)
+  then have "X derived_set_of (topspace X \<inter> S) = {}"
+    by simp
+  then show "X derived_set_of S = {}"
+    by simp
+qed (auto simp: t1_space_derived_set_of_singleton)
+
+lemma t1_space_closedin_singleton:
+   "t1_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. closedin X {x})"
+  apply (rule iffI)
+  apply (simp add: closedin_contains_derived_set t1_space_derived_set_of_singleton)
+  using t1_space_alt by auto
+
+lemma closedin_t1_singleton:
+   "\<lbrakk>t1_space X; a \<in> topspace X\<rbrakk> \<Longrightarrow> closedin X {a}"
+  by (simp add: t1_space_closedin_singleton)
+
+lemma t1_space_closedin_finite:
+   "t1_space X \<longleftrightarrow> (\<forall>S. finite S \<and> S \<subseteq> topspace X \<longrightarrow> closedin X S)"
+  apply (rule iffI)
+  apply (simp add: closedin_contains_derived_set t1_space_derived_set_of_finite)
+  by (simp add: t1_space_closedin_singleton)
+
+lemma closure_of_singleton:
+   "t1_space X \<Longrightarrow> X closure_of {a} = (if a \<in> topspace X then {a} else {})"
+  by (simp add: closure_of_eq t1_space_closedin_singleton closure_of_eq_empty_gen)
+
+lemma separated_in_singleton:
+  assumes "t1_space X"
+  shows "separatedin X {a} S \<longleftrightarrow> a \<in> topspace X \<and> S \<subseteq> topspace X \<and> (a \<notin> X closure_of S)"
+        "separatedin X S {a} \<longleftrightarrow> a \<in> topspace X \<and> S \<subseteq> topspace X \<and> (a \<notin> X closure_of S)"
+  unfolding separatedin_def
+  using assms closure_of closure_of_singleton by fastforce+
+
+lemma t1_space_openin_delete:
+   "t1_space X \<longleftrightarrow> (\<forall>U x. openin X U \<and> x \<in> U \<longrightarrow> openin X (U - {x}))"
+  apply (rule iffI)
+  apply (meson closedin_t1_singleton in_mono openin_diff openin_subset)
+  by (simp add: closedin_def t1_space_closedin_singleton)
+
+lemma t1_space_openin_delete_alt:
+   "t1_space X \<longleftrightarrow> (\<forall>U x. openin X U \<longrightarrow> openin X (U - {x}))"
+  by (metis Diff_empty Diff_insert0 t1_space_openin_delete)
+
+
+lemma t1_space_singleton_Inter_open:
+      "t1_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. \<Inter>{U. openin X U \<and> x \<in> U} = {x})"  (is "?P=?Q")
+  and t1_space_Inter_open_supersets:
+     "t1_space X \<longleftrightarrow> (\<forall>S. S \<subseteq> topspace X \<longrightarrow> \<Inter>{U. openin X U \<and> S \<subseteq> U} = S)" (is "?P=?R")
+proof -
+  have "?R \<Longrightarrow> ?Q"
+    apply clarify
+    apply (drule_tac x="{x}" in spec, simp)
+    done
+  moreover have "?Q \<Longrightarrow> ?P"
+    apply (clarsimp simp add: t1_space_def)
+    apply (drule_tac x=x in bspec)
+     apply (simp_all add: set_eq_iff)
+    by (metis (no_types, lifting))
+  moreover have "?P \<Longrightarrow> ?R"
+  proof (clarsimp simp add: t1_space_closedin_singleton, rule subset_antisym)
+    fix S
+    assume S: "\<forall>x\<in>topspace X. closedin X {x}" "S \<subseteq> topspace X"
+    then show "\<Inter> {U. openin X U \<and> S \<subseteq> U} \<subseteq> S"
+      apply clarsimp
+      by (metis Diff_insert_absorb Set.set_insert closedin_def openin_topspace subset_insert)
+  qed force
+  ultimately show "?P=?Q" "?P=?R"
+    by auto
+qed
+
+lemma t1_space_derived_set_of_infinite_openin:
+   "t1_space X \<longleftrightarrow>
+        (\<forall>S. X derived_set_of S =
+             {x \<in> topspace X. \<forall>U. x \<in> U \<and> openin X U \<longrightarrow> infinite(S \<inter> U)})"
+         (is "_ = ?rhs")
+proof
+  assume "t1_space X"
+  show ?rhs
+  proof safe
+    fix S x U
+    assume "x \<in> X derived_set_of S" "x \<in> U" "openin X U" "finite (S \<inter> U)"
+    with \<open>t1_space X\<close> show "False"
+      apply (simp add: t1_space_derived_set_of_finite)
+      by (metis IntI empty_iff empty_subsetI inf_commute openin_Int_derived_set_of_subset subset_antisym)
+  next
+    fix S x
+    have eq: "(\<exists>y. (y \<noteq> x) \<and> y \<in> S \<and> y \<in> T) \<longleftrightarrow> ~((S \<inter> T) \<subseteq> {x})" for x S T
+      by blast
+    assume "x \<in> topspace X" "\<forall>U. x \<in> U \<and> openin X U \<longrightarrow> infinite (S \<inter> U)"
+    then show "x \<in> X derived_set_of S"
+      apply (clarsimp simp add: derived_set_of_def eq)
+      by (meson finite.emptyI finite.insertI finite_subset)
+  qed (auto simp: in_derived_set_of)
+qed (auto simp: t1_space_derived_set_of_singleton)
+
+lemma finite_t1_space_imp_discrete_topology:
+   "\<lbrakk>topspace X = U; finite U; t1_space X\<rbrakk> \<Longrightarrow> X = discrete_topology U"
+  by (metis discrete_topology_unique_derived_set t1_space_derived_set_of_finite)
+
+lemma t1_space_subtopology: "t1_space X \<Longrightarrow> t1_space(subtopology X U)"
+  by (simp add: derived_set_of_subtopology t1_space_derived_set_of_finite)
+
+lemma closedin_derived_set_of_gen:
+   "t1_space X \<Longrightarrow> closedin X (X derived_set_of S)"
+  apply (clarsimp simp add: in_derived_set_of closedin_contains_derived_set derived_set_of_subset_topspace)
+  by (metis DiffD2 insert_Diff insert_iff t1_space_openin_delete)
+
+lemma derived_set_of_derived_set_subset_gen:
+   "t1_space X \<Longrightarrow> X derived_set_of (X derived_set_of S) \<subseteq> X derived_set_of S"
+  by (meson closedin_contains_derived_set closedin_derived_set_of_gen)
+
+lemma subtopology_eq_discrete_topology_gen_finite:
+   "\<lbrakk>t1_space X; finite S\<rbrakk> \<Longrightarrow> subtopology X S = discrete_topology(topspace X \<inter> S)"
+  by (simp add: subtopology_eq_discrete_topology_gen t1_space_derived_set_of_finite)
+
+lemma subtopology_eq_discrete_topology_finite:
+   "\<lbrakk>t1_space X; S \<subseteq> topspace X; finite S\<rbrakk>
+        \<Longrightarrow> subtopology X S = discrete_topology S"
+  by (simp add: subtopology_eq_discrete_topology_eq t1_space_derived_set_of_finite)
+
+lemma t1_space_closed_map_image:
+   "\<lbrakk>closed_map X Y f; f ` (topspace X) = topspace Y; t1_space X\<rbrakk> \<Longrightarrow> t1_space Y"
+  by (metis closed_map_def finite_subset_image t1_space_closedin_finite)
+
+lemma homeomorphic_t1_space: "X homeomorphic_space Y \<Longrightarrow> (t1_space X \<longleftrightarrow> t1_space Y)"
+  apply (clarsimp simp add: homeomorphic_space_def)
+  by (meson homeomorphic_eq_everything_map homeomorphic_maps_map t1_space_closed_map_image)
+
+proposition t1_space_product_topology:
+   "t1_space (product_topology X I)
+\<longleftrightarrow> topspace(product_topology X I) = {} \<or> (\<forall>i \<in> I. t1_space (X i))"
+proof (cases "topspace(product_topology X I) = {}")
+  case True
+  then show ?thesis
+    using True t1_space_empty by blast
+next
+  case False
+  then obtain f where f: "f \<in> (\<Pi>\<^sub>E i\<in>I. topspace(X i))"
+    by fastforce
+  have "t1_space (product_topology X I) \<longleftrightarrow> (\<forall>i\<in>I. t1_space (X i))"
+  proof (intro iffI ballI)
+    show "t1_space (X i)" if "t1_space (product_topology X I)" and "i \<in> I" for i
+    proof -
+      have clo: "\<And>h. h \<in> (\<Pi>\<^sub>E i\<in>I. topspace (X i)) \<Longrightarrow> closedin (product_topology X I) {h}"
+        using that by (simp add: t1_space_closedin_singleton)
+      show ?thesis
+        unfolding t1_space_closedin_singleton
+      proof clarify
+        show "closedin (X i) {xi}" if "xi \<in> topspace (X i)" for xi
+          using clo [of "\<lambda>j \<in> I. if i=j then xi else f j"] f that \<open>i \<in> I\<close>
+          by (fastforce simp add: closedin_product_topology_singleton)
+      qed
+    qed
+  next
+  next
+    show "t1_space (product_topology X I)" if "\<forall>i\<in>I. t1_space (X i)"
+      using that
+      by (simp add: t1_space_closedin_singleton Ball_def PiE_iff closedin_product_topology_singleton)
+  qed
+  then show ?thesis
+    using False by blast
+qed
+
+end