--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/List_Lenlexorder.thy Fri Apr 17 20:55:53 2020 +0100
@@ -0,0 +1,95 @@
+(* Title: HOL/Library/List_Lenlexorder.thy
+*)
+
+section \<open>Lexicographic order on lists\<close>
+
+theory List_Lenlexorder
+imports Main
+begin
+
+
+instantiation list :: (ord) ord
+begin
+
+definition
+ list_less_def: "xs < ys \<longleftrightarrow> (xs, ys) \<in> lenlex {(u, v). u < v}"
+
+definition
+ list_le_def: "(xs :: _ list) \<le> ys \<longleftrightarrow> xs < ys \<or> xs = ys"
+
+instance ..
+
+end
+
+instance list :: (order) order
+proof
+ have tr: "trans {(u, v::'a). u < v}"
+ using trans_def by fastforce
+ have \<section>: False
+ if "(xs,ys) \<in> lenlex {(u, v). u < v}" "(ys,xs) \<in> lenlex {(u, v). u < v}" for xs ys :: "'a list"
+ proof -
+ have "(xs,xs) \<in> lenlex {(u, v). u < v}"
+ using that transD [OF lenlex_transI [OF tr]] by blast
+ then show False
+ by (meson case_prodD lenlex_irreflexive less_irrefl mem_Collect_eq)
+ qed
+ show "xs \<le> xs" for xs :: "'a list" by (simp add: list_le_def)
+ show "xs \<le> zs" if "xs \<le> ys" and "ys \<le> zs" for xs ys zs :: "'a list"
+ using that transD [OF lenlex_transI [OF tr]] by (auto simp add: list_le_def list_less_def)
+ show "xs = ys" if "xs \<le> ys" "ys \<le> xs" for xs ys :: "'a list"
+ using \<section> that list_le_def list_less_def by blast
+ show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" for xs ys :: "'a list"
+ by (auto simp add: list_less_def list_le_def dest: \<section>)
+qed
+
+instance list :: (linorder) linorder
+proof
+ fix xs ys :: "'a list"
+ have "total (lenlex {(u, v::'a). u < v})"
+ by (rule total_lenlex) (auto simp: total_on_def)
+ then show "xs \<le> ys \<or> ys \<le> xs"
+ by (auto simp add: total_on_def list_le_def list_less_def)
+qed
+
+instantiation list :: (linorder) distrib_lattice
+begin
+
+definition "(inf :: 'a list \<Rightarrow> _) = min"
+
+definition "(sup :: 'a list \<Rightarrow> _) = max"
+
+instance
+ by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2)
+
+end
+
+lemma not_less_Nil [simp]: "\<not> x < []"
+ by (simp add: list_less_def)
+
+lemma Nil_less_Cons [simp]: "[] < a # x"
+ by (simp add: list_less_def)
+
+lemma Cons_less_Cons: "a # x < b # y \<longleftrightarrow> length x < length y \<or> length x = length y \<and> (a < b \<or> a = b \<and> x < y)"
+ using lenlex_length
+ by (fastforce simp: list_less_def Cons_lenlex_iff)
+
+lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []"
+ unfolding list_le_def by (cases x) auto
+
+lemma Nil_le_Cons [simp]: "[] \<le> x"
+ unfolding list_le_def by (cases x) auto
+
+lemma Cons_le_Cons: "a # x \<le> b # y \<longleftrightarrow> length x < length y \<or> length x = length y \<and> (a < b \<or> a = b \<and> x \<le> y)"
+ by (auto simp: list_le_def Cons_less_Cons)
+
+instantiation list :: (order) order_bot
+begin
+
+definition "bot = []"
+
+instance
+ by standard (simp add: bot_list_def)
+
+end
+
+end