src/HOL/Analysis/Conformal_Mappings.thy
changeset 70707 125705f5965f
parent 70532 fcf3b891ccb1
child 70817 dd675800469d
--- a/src/HOL/Analysis/Conformal_Mappings.thy	Sun Sep 15 17:24:31 2019 +0200
+++ b/src/HOL/Analysis/Conformal_Mappings.thy	Mon Sep 16 17:03:13 2019 +0100
@@ -4783,8 +4783,7 @@
           then show " (f' has_field_derivative of_int po * pp w * (w - p) powr of_int (po - 1) 
                   + deriv pp w * (w - p) powr of_int po) (at w)"
             unfolding f'_def using \<open>w\<noteq>p\<close>
-            apply (auto intro!: derivative_eq_intros(35) DERIV_cong[OF has_field_derivative_powr_of_int])
-            by (auto intro: derivative_eq_intros)
+            by (auto intro!: derivative_eq_intros DERIV_cong[OF has_field_derivative_powr_of_int])
         qed
         ultimately show "prin w + anal w = ff' w"
           unfolding ff'_def prin_def anal_def