--- a/src/HOL/Bali/DeclConcepts.thy Fri Nov 15 21:43:22 2024 +0100
+++ b/src/HOL/Bali/DeclConcepts.thy Fri Nov 15 23:20:24 2024 +0100
@@ -1019,9 +1019,8 @@
(auto simp add: declared_in_def cdeclaredmethd_def cdeclaredfield_def)
next
case (Inherited m C S)
- assume "G\<turnstile>C\<prec>\<^sub>C1S" and "is_class G S"
- then show "is_class G C"
- by - (rule subcls_is_class2,auto)
+ show "is_class G C" if "G\<turnstile>C\<prec>\<^sub>C1S" and "is_class G S"
+ by (rule subcls_is_class2) (use that in auto)
qed
lemma member_of_declC:
@@ -2336,13 +2335,13 @@
shows "D\<in>superclasses G C" using clsrel cls_C
proof (induct arbitrary: c rule: converse_trancl_induct)
case (base C)
- with ws wf show ?case
- by (auto intro: no_subcls1_Object simp add: superclasses_rec subcls1_def)
+ show ?case
+ by (use ws wf base in \<open>auto intro: no_subcls1_Object simp add: superclasses_rec subcls1_def\<close>)
next
case (step C S)
- with ws wf show ?case
- by - (rule superclasses_mono,
- auto dest: no_subcls1_Object simp add: subcls1_def )
+ show ?case
+ by (rule superclasses_mono)
+ (use ws wf step in \<open>auto dest: no_subcls1_Object simp add: subcls1_def\<close>)
qed
end