doc-src/ZF/ZF_examples.thy
changeset 14152 12f6f18e7afc
child 14159 e2eba24c8a2a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/ZF_examples.thy	Tue Aug 19 13:53:58 2003 +0200
@@ -0,0 +1,121 @@
+header{*Examples of Reasoning in ZF Set Theory*}
+
+theory ZF_examples = Main_ZFC:
+
+subsection {* Binary Trees *}
+
+consts
+  bt :: "i => i"
+
+datatype "bt(A)" =
+  Lf | Br ("a \<in> A", "t1 \<in> bt(A)", "t2 \<in> bt(A)")
+
+declare bt.intros [simp]
+
+text{*Induction via tactic emulation*}
+lemma Br_neq_left [rule_format]: "l \<in> bt(A) ==> \<forall>x r. Br(x, l, r) \<noteq> l"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+  apply (induct_tac l)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+  apply auto
+  done
+
+(*
+  apply (Inductive.case_tac l)
+  apply (tactic {*exhaust_tac "l" 1*})
+*)
+
+text{*The new induction method, which I don't understand*}
+lemma Br_neq_left': "l \<in> bt(A) ==> (!!x r. Br(x, l, r) \<noteq> l)"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+  apply (induct set: bt)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+  apply auto
+  done
+
+lemma Br_iff: "Br(a, l, r) = Br(a', l', r') <-> a = a' & l = l' & r = r'"
+  -- "Proving a freeness theorem."
+  by (blast elim!: bt.free_elims)
+
+inductive_cases BrE: "Br(a, l, r) \<in> bt(A)"
+  -- "An elimination rule, for type-checking."
+
+text {*
+@{thm[display] BrE[no_vars]}
+\rulename{BrE}
+*};
+
+subsection{*Powerset example*}
+
+lemma Pow_mono: "A<=B  ==>  Pow(A) <= Pow(B)"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule subsetI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule PowI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (drule PowD)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (erule subset_trans, assumption)
+done
+
+lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule equalityI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Int_greatest)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Int_lower1 [THEN Pow_mono])
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Int_lower2 [THEN Pow_mono])
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule subsetI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (erule IntE)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule PowI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (drule PowD)+
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Int_greatest, assumption+)
+done
+
+text{*Trying again from the beginning in order to use @{text blast}*}
+lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
+by blast
+
+
+lemma "C<=D ==> Union(C) <= Union(D)"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule subsetI)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (erule UnionE)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule UnionI)
+apply (erule subsetD, assumption, assumption)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+done
+
+text{*Trying again from the beginning in order to prove from the definitions*}
+
+lemma "C<=D ==> Union(C) <= Union(D)"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Union_least)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule Union_upper)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (erule subsetD, assumption)
+done
+
+
+lemma "[| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==> (f Un g)`a = f`a"
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule apply_equality)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule UnI1)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule apply_Pair, assumption+)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (rule fun_disjoint_Un, assumption+)
+done
+
+end