--- a/src/HOL/Proofs/Lambda/NormalForm.thy Thu Oct 31 18:43:32 2024 +0100
+++ b/src/HOL/Proofs/Lambda/NormalForm.thy Fri Nov 01 12:15:53 2024 +0000
@@ -52,15 +52,10 @@
by (induct xs) simp_all
lemma listall_app: "listall P (xs @ ys) = (listall P xs \<and> listall P ys)"
- apply (induct xs)
- apply (rule iffI, simp, simp)
- apply (rule iffI, simp, simp)
- done
+ by (induct xs; intro iffI; simp)
lemma listall_snoc [simp]: "listall P (xs @ [x]) = (listall P xs \<and> P x)"
- apply (rule iffI)
- apply (simp add: listall_app)+
- done
+ by (rule iffI; simp add: listall_app)
lemma listall_cong [cong, extraction_expand]:
"xs = ys \<Longrightarrow> listall P xs = listall P ys"
@@ -82,18 +77,26 @@
monos listall_def
lemma nat_eq_dec: "\<And>n::nat. m = n \<or> m \<noteq> n"
- apply (induct m)
- apply (case_tac n)
- apply (case_tac [3] n)
- apply (simp only: nat.simps, iprover?)+
- done
+proof (induction m)
+ case 0
+ then show ?case
+ by (cases n; simp only: nat.simps; iprover)
+next
+ case (Suc m)
+ then show ?case
+ by (cases n; simp only: nat.simps; iprover)
+qed
lemma nat_le_dec: "\<And>n::nat. m < n \<or> \<not> (m < n)"
- apply (induct m)
- apply (case_tac n)
- apply (case_tac [3] n)
- apply (simp del: simp_thms subst_all, iprover?)+
- done
+proof (induction m)
+ case 0
+ then show ?case
+ by (cases n; simp only: order.irrefl zero_less_Suc; iprover)
+next
+ case (Suc m)
+ then show ?case
+ by (cases n; simp only: not_less_zero Suc_less_eq; iprover)
+qed
lemma App_NF_D: assumes NF: "NF (Var n \<degree>\<degree> ts)"
shows "listall NF ts" using NF
@@ -103,11 +106,11 @@
subsection \<open>Properties of \<open>NF\<close>\<close>
lemma Var_NF: "NF (Var n)"
- apply (subgoal_tac "NF (Var n \<degree>\<degree> [])")
- apply simp
- apply (rule NF.App)
- apply simp
- done
+proof -
+ have "NF (Var n \<degree>\<degree> [])"
+ by (rule NF.App) simp
+ then show ?thesis by simp
+qed
lemma Abs_NF:
assumes NF: "NF (Abs t \<degree>\<degree> ts)"
@@ -127,39 +130,29 @@
lemma subst_Var_NF: "NF t \<Longrightarrow> NF (t[Var i/j])"
apply (induct arbitrary: i j set: NF)
- apply simp
- apply (frule listall_conj1)
- apply (drule listall_conj2)
- apply (drule_tac i=i and j=j in subst_terms_NF)
- apply assumption
- apply (rule_tac m1=x and n1=j in nat_eq_dec [THEN disjE])
- apply simp
- apply (erule NF.App)
- apply (rule_tac m1=j and n1=x in nat_le_dec [THEN disjE])
- apply simp
- apply (iprover intro: NF.App)
- apply simp
- apply (iprover intro: NF.App)
- apply simp
- apply (iprover intro: NF.Abs)
+ apply simp
+ apply (frule listall_conj1)
+ apply (drule listall_conj2)
+ apply (drule_tac i=i and j=j in subst_terms_NF)
+ apply assumption
+ apply (rule_tac m1=x and n1=j in nat_eq_dec [THEN disjE])
+ apply simp
+ apply (erule NF.App)
+ apply (rule_tac m1=j and n1=x in nat_le_dec [THEN disjE])
+ apply (simp_all add: NF.App NF.Abs)
done
lemma app_Var_NF: "NF t \<Longrightarrow> \<exists>t'. t \<degree> Var i \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
apply (induct set: NF)
- apply (simplesubst app_last) \<comment> \<open>Using \<open>subst\<close> makes extraction fail\<close>
- apply (rule exI)
- apply (rule conjI)
- apply (rule rtranclp.rtrancl_refl)
- apply (rule NF.App)
- apply (drule listall_conj1)
- apply (simp add: listall_app)
- apply (rule Var_NF)
- apply (rule exI)
- apply (rule conjI)
- apply (rule rtranclp.rtrancl_into_rtrancl)
- apply (rule rtranclp.rtrancl_refl)
- apply (rule beta)
- apply (erule subst_Var_NF)
+ apply (simplesubst app_last) \<comment> \<open>Using \<open>subst\<close> makes extraction fail\<close>
+ apply (rule exI)
+ apply (rule conjI)
+ apply (rule rtranclp.rtrancl_refl)
+ apply (rule NF.App)
+ apply (drule listall_conj1)
+ apply (simp add: listall_app)
+ apply (rule Var_NF)
+ apply (iprover intro: rtranclp.rtrancl_into_rtrancl rtranclp.rtrancl_refl beta subst_Var_NF)
done
lemma lift_terms_NF: "listall NF ts \<Longrightarrow>
@@ -169,20 +162,12 @@
lemma lift_NF: "NF t \<Longrightarrow> NF (lift t i)"
apply (induct arbitrary: i set: NF)
- apply (frule listall_conj1)
- apply (drule listall_conj2)
- apply (drule_tac i=i in lift_terms_NF)
- apply assumption
- apply (rule_tac m1=x and n1=i in nat_le_dec [THEN disjE])
- apply simp
- apply (rule NF.App)
- apply assumption
- apply simp
- apply (rule NF.App)
- apply assumption
- apply simp
- apply (rule NF.Abs)
- apply simp
+ apply (frule listall_conj1)
+ apply (drule listall_conj2)
+ apply (drule_tac i=i in lift_terms_NF)
+ apply assumption
+ apply (rule_tac m1=x and n1=i in nat_le_dec [THEN disjE])
+ apply (simp_all add: NF.App NF.Abs)
done
text \<open>