--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Induct/Binary_Trees.thy Wed Nov 14 23:22:43 2001 +0100
@@ -0,0 +1,120 @@
+(* Title: ZF/Induct/Binary_Trees.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1992 University of Cambridge
+*)
+
+header {* Binary trees *}
+
+theory Binary_Trees = Main:
+
+subsection {* Datatype definition *}
+
+consts
+ bt :: "i => i"
+
+datatype "bt(A)" =
+ Lf | Br ("a \<in> A", "t1 \<in> bt(A)", "t2 \<in> bt(A)")
+
+declare bt.intros [simp]
+
+lemma Br_neq_left: "l \<in> bt(A) ==> (!!x r. Br(x, l, r) \<noteq> l)"
+ by (induct set: bt) auto
+
+lemma Br_iff: "Br(a, l, r) = Br(a', l', r') <-> a = a' & l = l' & r = r'"
+ -- "Proving a freeness theorem."
+ by (fast elim!: bt.free_elims)
+
+inductive_cases BrE: "Br(a, l, r) \<in> bt(A)"
+ -- "An elimination rule, for type-checking."
+
+text {*
+ \medskip Lemmas to justify using @{term bt} in other recursive type
+ definitions.
+*}
+
+lemma bt_mono: "A \<subseteq> B ==> bt(A) \<subseteq> bt(B)"
+ apply (unfold bt.defs)
+ apply (rule lfp_mono)
+ apply (rule bt.bnd_mono)+
+ apply (rule univ_mono basic_monos | assumption)+
+ done
+
+lemma bt_univ: "bt(univ(A)) \<subseteq> univ(A)"
+ apply (unfold bt.defs bt.con_defs)
+ apply (rule lfp_lowerbound)
+ apply (rule_tac [2] A_subset_univ [THEN univ_mono])
+ apply (fast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ)
+ done
+
+lemma bt_subset_univ: "A \<subseteq> univ(B) ==> bt(A) \<subseteq> univ(B)"
+ apply (rule subset_trans)
+ apply (erule bt_mono)
+ apply (rule bt_univ)
+ done
+
+lemma bt_rec_type:
+ "[| t \<in> bt(A);
+ c \<in> C(Lf);
+ !!x y z r s. [| x \<in> A; y \<in> bt(A); z \<in> bt(A); r \<in> C(y); s \<in> C(z) |] ==>
+ h(x, y, z, r, s) \<in> C(Br(x, y, z))
+ |] ==> bt_rec(c, h, t) \<in> C(t)"
+ -- {* Type checking for recursor -- example only; not really needed. *}
+ apply (induct_tac t)
+ apply simp_all
+ done
+
+
+subsection {* Number of nodes *}
+
+consts
+ n_nodes :: "i => i"
+primrec
+ "n_nodes(Lf) = 0"
+ "n_nodes(Br(a, l, r)) = succ(n_nodes(l) #+ n_nodes(r))"
+
+lemma n_nodes_type [simp]: "t \<in> bt(A) ==> n_nodes(t) \<in> nat"
+ by (induct_tac t) auto
+
+
+subsection {* Number of leaves *}
+
+consts
+ n_leaves :: "i => i"
+primrec
+ "n_leaves(Lf) = 1"
+ "n_leaves(Br(a, l, r)) = n_leaves(l) #+ n_leaves(r)"
+
+lemma n_leaves_type [simp]: "t \<in> bt(A) ==> n_leaves(t) \<in> nat"
+ by (induct_tac t) auto
+
+
+subsection {* Reflecting trees *}
+
+consts
+ bt_reflect :: "i => i"
+primrec
+ "bt_reflect(Lf) = Lf"
+ "bt_reflect(Br(a, l, r)) = Br(a, bt_reflect(r), bt_reflect(l))"
+
+lemma bt_reflect_type [simp]: "t \<in> bt(A) ==> bt_reflect(t) \<in> bt(A)"
+ by (induct_tac t) auto
+
+text {*
+ \medskip Theorems about @{term n_leaves}.
+*}
+
+lemma n_leaves_reflect: "t \<in> bt(A) ==> n_leaves(bt_reflect(t)) = n_leaves(t)"
+ by (induct_tac t) (simp_all add: add_commute n_leaves_type)
+
+lemma n_leaves_nodes: "t \<in> bt(A) ==> n_leaves(t) = succ(n_nodes(t))"
+ by (induct_tac t) (simp_all add: add_succ_right)
+
+text {*
+ Theorems about @{term bt_reflect}.
+*}
+
+lemma bt_reflect_bt_reflect_ident: "t \<in> bt(A) ==> bt_reflect(bt_reflect(t)) = t"
+ by (induct_tac t) simp_all
+
+end