--- a/src/HOL/Algebra/Lattice.thy Sun Nov 26 13:19:52 2017 +0100
+++ b/src/HOL/Algebra/Lattice.thy Sun Nov 26 21:08:32 2017 +0100
@@ -98,11 +98,11 @@
locale weak_upper_semilattice = weak_partial_order +
assumes sup_of_two_exists:
- "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
+ "[| x \<in> carrier L; y \<in> carrier L |] ==> \<exists>s. least L s (Upper L {x, y})"
locale weak_lower_semilattice = weak_partial_order +
assumes inf_of_two_exists:
- "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
+ "[| x \<in> carrier L; y \<in> carrier L |] ==> \<exists>s. greatest L s (Lower L {x, y})"
locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice
@@ -250,7 +250,7 @@
qed
lemma (in weak_upper_semilattice) finite_sup_least:
- "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion>A) (Upper L A)"
+ "[| finite A; A \<subseteq> carrier L; A \<noteq> {} |] ==> least L (\<Squnion>A) (Upper L A)"
proof (induct set: finite)
case empty
then show ?case by simp
@@ -284,7 +284,7 @@
qed
lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
- "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion>A \<in> carrier L"
+ "[| finite A; A \<subseteq> carrier L; A \<noteq> {} |] ==> \<Squnion>A \<in> carrier L"
proof (induct set: finite)
case empty then show ?case by simp
next
@@ -495,7 +495,7 @@
qed
lemma (in weak_lower_semilattice) finite_inf_greatest:
- "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
+ "[| finite A; A \<subseteq> carrier L; A \<noteq> {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
proof (induct set: finite)
case empty then show ?case by simp
next
@@ -528,7 +528,7 @@
qed
lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
- "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter>A \<in> carrier L"
+ "[| finite A; A \<subseteq> carrier L; A \<noteq> {} |] ==> \<Sqinter>A \<in> carrier L"
proof (induct set: finite)
case empty then show ?case by simp
next
@@ -611,7 +611,7 @@
proof
fix x y
assume L: "x \<in> carrier L" "y \<in> carrier L"
- show "EX s. least L s (Upper L {x, y})"
+ show "\<exists>s. least L s (Upper L {x, y})"
proof -
note total L
moreover
@@ -631,7 +631,7 @@
next
fix x y
assume L: "x \<in> carrier L" "y \<in> carrier L"
- show "EX i. greatest L i (Lower L {x, y})"
+ show "\<exists>i. greatest L i (Lower L {x, y})"
proof -
note total L
moreover
@@ -687,14 +687,14 @@
locale upper_semilattice = partial_order +
assumes sup_of_two_exists:
- "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
+ "[| x \<in> carrier L; y \<in> carrier L |] ==> \<exists>s. least L s (Upper L {x, y})"
sublocale upper_semilattice \<subseteq> weak?: weak_upper_semilattice
by unfold_locales (rule sup_of_two_exists)
locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
- "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
+ "[| x \<in> carrier L; y \<in> carrier L |] ==> \<exists>s. greatest L s (Lower L {x, y})"
sublocale lower_semilattice \<subseteq> weak?: weak_lower_semilattice
by unfold_locales (rule inf_of_two_exists)