src/Pure/type_infer_context.ML
changeset 42405 13ecdb3057d8
child 43278 1fbdcebb364b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/type_infer_context.ML	Tue Apr 19 20:47:02 2011 +0200
@@ -0,0 +1,267 @@
+(*  Title:      Pure/type_infer_context.ML
+    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
+
+Type-inference preparation and standard type inference.
+*)
+
+signature TYPE_INFER_CONTEXT =
+sig
+  val const_sorts: bool Config.T
+  val prepare: Proof.context -> term list -> int * term list
+  val infer_types: Proof.context -> term list -> term list
+end;
+
+structure Type_Infer_Context: TYPE_INFER_CONTEXT =
+struct
+
+(** prepare types/terms: create inference parameters **)
+
+(* constraints *)
+
+val const_sorts = Config.bool (Config.declare "const_sorts" (K (Config.Bool true)));
+
+fun const_type ctxt =
+  try ((not (Config.get ctxt const_sorts) ? Type.strip_sorts) o
+    Consts.the_constraint (Proof_Context.consts_of ctxt));
+
+fun var_type ctxt = the_default dummyT o Proof_Context.def_type ctxt;
+
+
+(* prepare_typ *)
+
+fun prepare_typ typ params_idx =
+  let
+    val (params', idx) = fold_atyps
+      (fn TVar (xi, S) =>
+          (fn ps_idx as (ps, idx) =>
+            if Type_Infer.is_param xi andalso not (Vartab.defined ps xi)
+            then (Vartab.update (xi, Type_Infer.mk_param idx S) ps, idx + 1) else ps_idx)
+        | _ => I) typ params_idx;
+
+    fun prepare (T as Type (a, Ts)) idx =
+          if T = dummyT then (Type_Infer.mk_param idx [], idx + 1)
+          else
+            let val (Ts', idx') = fold_map prepare Ts idx
+            in (Type (a, Ts'), idx') end
+      | prepare (T as TVar (xi, _)) idx =
+          (case Vartab.lookup params' xi of
+            NONE => T
+          | SOME p => p, idx)
+      | prepare (TFree ("'_dummy_", S)) idx = (Type_Infer.mk_param idx S, idx + 1)
+      | prepare (T as TFree _) idx = (T, idx);
+
+    val (typ', idx') = prepare typ idx;
+  in (typ', (params', idx')) end;
+
+
+(* prepare_term *)
+
+fun prepare_term ctxt tm (vparams, params, idx) =
+  let
+    fun add_vparm xi (ps_idx as (ps, idx)) =
+      if not (Vartab.defined ps xi) then
+        (Vartab.update (xi, Type_Infer.mk_param idx []) ps, idx + 1)
+      else ps_idx;
+
+    val (vparams', idx') = fold_aterms
+      (fn Var (_, Type ("_polymorphic_", _)) => I
+        | Var (xi, _) => add_vparm xi
+        | Free (x, _) => add_vparm (x, ~1)
+        | _ => I)
+      tm (vparams, idx);
+    fun var_param xi = the (Vartab.lookup vparams' xi);
+
+    fun polyT_of T idx =
+      apsnd snd (prepare_typ (Type_Infer.paramify_vars T) (Vartab.empty, idx));
+
+    fun constraint T t ps =
+      if T = dummyT then (t, ps)
+      else
+        let val (T', ps') = prepare_typ T ps
+        in (Type.constraint T' t, ps') end;
+
+    fun prepare (Const ("_type_constraint_", T) $ t) ps_idx =
+          let
+            fun err () =
+              error ("Malformed internal type constraint: " ^ Syntax.string_of_typ ctxt T);
+            val A = (case T of Type ("fun", [A, B]) => if A = B then A else err () | _ => err ());
+            val (A', ps_idx') = prepare_typ A ps_idx;
+            val (t', ps_idx'') = prepare t ps_idx';
+          in (Const ("_type_constraint_", A' --> A') $ t', ps_idx'') end
+      | prepare (Const (c, T)) (ps, idx) =
+          (case const_type ctxt c of
+            SOME U =>
+              let val (U', idx') = polyT_of U idx
+              in constraint T (Const (c, U')) (ps, idx') end
+          | NONE => error ("Undeclared constant: " ^ quote c))
+      | prepare (Var (xi, Type ("_polymorphic_", [T]))) (ps, idx) =
+          let val (T', idx') = polyT_of T idx
+          in (Var (xi, T'), (ps, idx')) end
+      | prepare (Var (xi, T)) ps_idx = constraint T (Var (xi, var_param xi)) ps_idx
+      | prepare (Free (x, T)) ps_idx = constraint T (Free (x, var_param (x, ~1))) ps_idx
+      | prepare (Bound i) ps_idx = (Bound i, ps_idx)
+      | prepare (Abs (x, T, t)) ps_idx =
+          let
+            val (T', ps_idx') = prepare_typ T ps_idx;
+            val (t', ps_idx'') = prepare t ps_idx';
+          in (Abs (x, T', t'), ps_idx'') end
+      | prepare (t $ u) ps_idx =
+          let
+            val (t', ps_idx') = prepare t ps_idx;
+            val (u', ps_idx'') = prepare u ps_idx';
+          in (t' $ u', ps_idx'') end;
+
+    val (tm', (params', idx'')) = prepare tm (params, idx');
+  in (tm', (vparams', params', idx'')) end;
+
+
+
+(** order-sorted unification of types **)
+
+exception NO_UNIFIER of string * typ Vartab.table;
+
+fun unify ctxt =
+  let
+    val thy = Proof_Context.theory_of ctxt;
+    val arity_sorts = Type.arity_sorts (Context.pretty ctxt) (Sign.tsig_of thy);
+
+
+    (* adjust sorts of parameters *)
+
+    fun not_of_sort x S' S =
+      "Variable " ^ x ^ "::" ^ Syntax.string_of_sort ctxt S' ^ " not of sort " ^
+        Syntax.string_of_sort ctxt S;
+
+    fun meet (_, []) tye_idx = tye_idx
+      | meet (Type (a, Ts), S) (tye_idx as (tye, _)) =
+          meets (Ts, arity_sorts a S handle ERROR msg => raise NO_UNIFIER (msg, tye)) tye_idx
+      | meet (TFree (x, S'), S) (tye_idx as (tye, _)) =
+          if Sign.subsort thy (S', S) then tye_idx
+          else raise NO_UNIFIER (not_of_sort x S' S, tye)
+      | meet (TVar (xi, S'), S) (tye_idx as (tye, idx)) =
+          if Sign.subsort thy (S', S) then tye_idx
+          else if Type_Infer.is_param xi then
+            (Vartab.update_new
+              (xi, Type_Infer.mk_param idx (Sign.inter_sort thy (S', S))) tye, idx + 1)
+          else raise NO_UNIFIER (not_of_sort (Term.string_of_vname xi) S' S, tye)
+    and meets (T :: Ts, S :: Ss) (tye_idx as (tye, _)) =
+          meets (Ts, Ss) (meet (Type_Infer.deref tye T, S) tye_idx)
+      | meets _ tye_idx = tye_idx;
+
+
+    (* occurs check and assignment *)
+
+    fun occurs_check tye xi (TVar (xi', _)) =
+          if xi = xi' then raise NO_UNIFIER ("Occurs check!", tye)
+          else
+            (case Vartab.lookup tye xi' of
+              NONE => ()
+            | SOME T => occurs_check tye xi T)
+      | occurs_check tye xi (Type (_, Ts)) = List.app (occurs_check tye xi) Ts
+      | occurs_check _ _ _ = ();
+
+    fun assign xi (T as TVar (xi', _)) S env =
+          if xi = xi' then env
+          else env |> meet (T, S) |>> Vartab.update_new (xi, T)
+      | assign xi T S (env as (tye, _)) =
+          (occurs_check tye xi T; env |> meet (T, S) |>> Vartab.update_new (xi, T));
+
+
+    (* unification *)
+
+    fun show_tycon (a, Ts) =
+      quote (Syntax.string_of_typ ctxt (Type (a, replicate (length Ts) dummyT)));
+
+    fun unif (T1, T2) (env as (tye, _)) =
+      (case pairself (`Type_Infer.is_paramT o Type_Infer.deref tye) (T1, T2) of
+        ((true, TVar (xi, S)), (_, T)) => assign xi T S env
+      | ((_, T), (true, TVar (xi, S))) => assign xi T S env
+      | ((_, Type (a, Ts)), (_, Type (b, Us))) =>
+          if a <> b then
+            raise NO_UNIFIER
+              ("Clash of types " ^ show_tycon (a, Ts) ^ " and " ^ show_tycon (b, Us), tye)
+          else fold unif (Ts ~~ Us) env
+      | ((_, T), (_, U)) => if T = U then env else raise NO_UNIFIER ("", tye));
+
+  in unif end;
+
+
+
+(** simple type inference **)
+
+(* infer *)
+
+fun infer ctxt =
+  let
+    (* errors *)
+
+    fun prep_output tye bs ts Ts =
+      let
+        val (Ts_bTs', ts') = Type_Infer.finish ctxt tye (Ts @ map snd bs, ts);
+        val (Ts', Ts'') = chop (length Ts) Ts_bTs';
+        fun prep t =
+          let val xs = rev (Term.variant_frees t (rev (map fst bs ~~ Ts'')))
+          in Term.subst_bounds (map Syntax_Trans.mark_boundT xs, t) end;
+      in (map prep ts', Ts') end;
+
+    fun err_loose i = error ("Loose bound variable: B." ^ string_of_int i);
+
+    fun unif_failed msg =
+      "Type unification failed" ^ (if msg = "" then "" else ": " ^ msg) ^ "\n\n";
+
+    fun err_appl msg tye bs t T u U =
+      let val ([t', u'], [T', U']) = prep_output tye bs [t, u] [T, U]
+      in error (unif_failed msg ^ Type.appl_error ctxt t' T' u' U' ^ "\n") end;
+
+
+    (* main *)
+
+    fun inf _ (Const (_, T)) tye_idx = (T, tye_idx)
+      | inf _ (Free (_, T)) tye_idx = (T, tye_idx)
+      | inf _ (Var (_, T)) tye_idx = (T, tye_idx)
+      | inf bs (Bound i) tye_idx =
+          (snd (nth bs i handle Subscript => err_loose i), tye_idx)
+      | inf bs (Abs (x, T, t)) tye_idx =
+          let val (U, tye_idx') = inf ((x, T) :: bs) t tye_idx
+          in (T --> U, tye_idx') end
+      | inf bs (t $ u) tye_idx =
+          let
+            val (T, tye_idx') = inf bs t tye_idx;
+            val (U, (tye, idx)) = inf bs u tye_idx';
+            val V = Type_Infer.mk_param idx [];
+            val tye_idx'' = unify ctxt (U --> V, T) (tye, idx + 1)
+              handle NO_UNIFIER (msg, tye') => err_appl msg tye' bs t T u U;
+          in (V, tye_idx'') end;
+
+  in inf [] end;
+
+
+(* main interfaces *)
+
+fun prepare ctxt raw_ts =
+  let
+    val constrain_vars = Term.map_aterms
+      (fn Free (x, T) => Type.constraint T (Free (x, var_type ctxt (x, ~1)))
+        | Var (xi, T) => Type.constraint T (Var (xi, var_type ctxt xi))
+        | t => t);
+
+    val ts = burrow_types (Syntax.check_typs ctxt) raw_ts;
+    val idx = Type_Infer.param_maxidx_of ts + 1;
+    val (ts', (_, _, idx')) =
+      fold_map (prepare_term ctxt o constrain_vars) ts
+        (Vartab.empty, Vartab.empty, idx);
+  in (idx', ts') end;
+
+fun infer_types ctxt raw_ts =
+  let
+    val (idx, ts) = prepare ctxt raw_ts;
+    val (tye, _) = fold (snd oo infer ctxt) ts (Vartab.empty, idx);
+    val (_, ts') = Type_Infer.finish ctxt tye ([], ts);
+  in ts' end;
+
+val _ =
+  Context.>>
+    (Syntax.add_term_check 0 "standard"
+      (fn ctxt => infer_types ctxt #> map (Proof_Context.expand_abbrevs ctxt)));
+
+end;