src/HOLCF/Cont.thy
changeset 15588 14e3228f18cc
parent 15577 e16da3068ad6
child 15600 a59f07556a8d
--- a/src/HOLCF/Cont.thy	Mon Mar 07 23:54:01 2005 +0100
+++ b/src/HOLCF/Cont.thy	Tue Mar 08 00:00:49 2005 +0100
@@ -12,20 +12,17 @@
 imports FunCpo
 begin
 
-(* 
-
-   Now we change the default class! Form now on all untyped typevariables are
+text {*
+   Now we change the default class! Form now on all untyped type variables are
    of default class po
-
-*)
-
+*}
 
 defaultsort po
 
 consts  
-        monofun :: "('a => 'b) => bool" (* monotonicity    *)
-        contlub :: "('a::cpo => 'b::cpo) => bool"         (* first cont. def *)
-        cont    :: "('a::cpo => 'b::cpo) => bool"         (* secnd cont. def *)
+        monofun :: "('a => 'b) => bool"  -- "monotonicity"
+        contlub :: "('a::cpo => 'b::cpo) => bool"  -- "first cont. def"
+        cont    :: "('a::cpo => 'b::cpo) => bool"  -- "secnd cont. def"
 
 defs 
 
@@ -37,147 +34,100 @@
 cont:            "cont(f)   == ! Y. chain(Y) --> 
                                 range(% i. f(Y(i))) <<| f(lub(range(Y)))"
 
-(* ------------------------------------------------------------------------ *)
-(* the main purpose of cont.thy is to show:                                 *)
-(*              monofun(f) & contlub(f)  <==> cont(f)                       *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  the main purpose of cont.thy is to show:
+  @{prop "monofun(f) & contlub(f) == cont(f)"}
+*}
 
-(*  Title:      HOLCF/Cont.ML
-    ID:         $Id$
-    Author:     Franz Regensburger
-    License:    GPL (GNU GENERAL PUBLIC LICENSE)
-
-Results about continuity and monotonicity
-*)
-
-(* ------------------------------------------------------------------------ *)
-(* access to definition                                                     *)
-(* ------------------------------------------------------------------------ *)
+text {* access to definition *}
 
 lemma contlubI:
         "! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))==>
         contlub(f)"
-apply (unfold contlub)
-apply assumption
-done
+by (unfold contlub)
 
 lemma contlubE: 
         " contlub(f)==> 
           ! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))"
-apply (unfold contlub)
-apply assumption
-done
-
+by (unfold contlub)
 
 lemma contI: 
  "! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y))) ==> cont(f)"
-
-apply (unfold cont)
-apply assumption
-done
+by (unfold cont)
 
 lemma contE: 
  "cont(f) ==> ! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y)))"
-apply (unfold cont)
-apply assumption
-done
-
+by (unfold cont)
 
 lemma monofunI: 
         "! x y. x << y --> f(x) << f(y) ==> monofun(f)"
-apply (unfold monofun)
-apply assumption
-done
+by (unfold monofun)
 
 lemma monofunE: 
         "monofun(f) ==> ! x y. x << y --> f(x) << f(y)"
-apply (unfold monofun)
-apply assumption
-done
+by (unfold monofun)
 
-(* ------------------------------------------------------------------------ *)
-(* the main purpose of cont.thy is to show:                                 *)
-(*              monofun(f) & contlub(f)  <==> cont(f)                      *)
-(* ------------------------------------------------------------------------ *)
-
-(* ------------------------------------------------------------------------ *)
-(* monotone functions map chains to chains                                  *)
-(* ------------------------------------------------------------------------ *)
+text {* monotone functions map chains to chains *}
 
 lemma ch2ch_monofun: 
         "[| monofun(f); chain(Y) |] ==> chain(%i. f(Y(i)))"
 apply (rule chainI)
-apply (erule monofunE [THEN spec, THEN spec, THEN mp])
+apply (erule monofunE [rule_format])
 apply (erule chainE)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* monotone functions map upper bound to upper bounds                       *)
-(* ------------------------------------------------------------------------ *)
+text {* monotone functions map upper bound to upper bounds *}
 
 lemma ub2ub_monofun: 
  "[| monofun(f); range(Y) <| u|]  ==> range(%i. f(Y(i))) <| f(u)"
 apply (rule ub_rangeI)
-apply (erule monofunE [THEN spec, THEN spec, THEN mp])
+apply (erule monofunE [rule_format])
 apply (erule ub_rangeD)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* left to right: monofun(f) & contlub(f)  ==> cont(f)                     *)
-(* ------------------------------------------------------------------------ *)
+text {* left to right: @{prop "monofun(f) & contlub(f) ==> cont(f)"} *}
 
 lemma monocontlub2cont: 
         "[|monofun(f);contlub(f)|] ==> cont(f)"
-apply (unfold cont)
-apply (intro strip)
+apply (rule contI [rule_format])
 apply (rule thelubE)
 apply (erule ch2ch_monofun)
 apply assumption
-apply (erule contlubE [THEN spec, THEN mp, symmetric])
+apply (erule contlubE [rule_format, symmetric])
 apply assumption
 done
 
-(* ------------------------------------------------------------------------ *)
-(* first a lemma about binary chains                                        *)
-(* ------------------------------------------------------------------------ *)
+text {* first a lemma about binary chains *}
 
 lemma binchain_cont: "[| cont(f); x << y |]   
       ==> range(%i::nat. f(if i = 0 then x else y)) <<| f(y)"
 apply (rule subst)
-prefer 2 apply (erule contE [THEN spec, THEN mp])
+prefer 2 apply (erule contE [rule_format])
 apply (erule bin_chain)
 apply (rule_tac y = "y" in arg_cong)
 apply (erule lub_bin_chain [THEN thelubI])
 done
 
-(* ------------------------------------------------------------------------ *)
-(* right to left: cont(f) ==> monofun(f) & contlub(f)                      *)
-(* part1:         cont(f) ==> monofun(f                                    *)
-(* ------------------------------------------------------------------------ *)
+text {* right to left: @{prop "cont(f) ==> monofun(f) & contlub(f)"} *}
+text {* part1: @{prop "cont(f) ==> monofun(f)"} *}
 
 lemma cont2mono: "cont(f) ==> monofun(f)"
-apply (unfold monofun)
-apply (intro strip)
+apply (rule monofunI [rule_format])
 apply (drule binchain_cont [THEN is_ub_lub])
 apply (auto split add: split_if_asm)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* right to left: cont(f) ==> monofun(f) & contlub(f)                      *)
-(* part2:         cont(f) ==>              contlub(f)                      *)
-(* ------------------------------------------------------------------------ *)
+text {* right to left: @{prop "cont(f) ==> monofun(f) & contlub(f)"} *}
+text {* part2: @{prop "cont(f) ==> contlub(f)"} *}
 
 lemma cont2contlub: "cont(f) ==> contlub(f)"
-apply (unfold contlub)
-apply (intro strip)
+apply (rule contlubI [rule_format])
 apply (rule thelubI [symmetric])
-apply (erule contE [THEN spec, THEN mp])
+apply (erule contE [rule_format])
 apply assumption
 done
 
-(* ------------------------------------------------------------------------ *)
-(* monotone functions map finite chains to finite chains                    *)
-(* ------------------------------------------------------------------------ *)
+text {* monotone functions map finite chains to finite chains *}
 
 lemma monofun_finch2finch: 
   "[| monofun f; finite_chain Y |] ==> finite_chain (%n. f (Y n))"
@@ -185,31 +135,23 @@
 apply (force elim!: ch2ch_monofun simp add: max_in_chain_def)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* The same holds for continuous functions                                  *)
-(* ------------------------------------------------------------------------ *)
+text {* The same holds for continuous functions *}
 
 lemmas cont_finch2finch = cont2mono [THEN monofun_finch2finch, standard]
 (* [| cont ?f; finite_chain ?Y |] ==> finite_chain (%n. ?f (?Y n)) *)
 
-
-(* ------------------------------------------------------------------------ *)
-(* The following results are about a curried function that is monotone      *)
-(* in both arguments                                                        *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  The following results are about a curried function that is monotone
+  in both arguments
+*}
 
 lemma ch2ch_MF2L: 
 "[|monofun(MF2); chain(F)|] ==> chain(%i. MF2 (F i) x)"
-apply (erule ch2ch_monofun [THEN ch2ch_fun])
-apply assumption
-done
-
+by (erule ch2ch_monofun [THEN ch2ch_fun])
 
 lemma ch2ch_MF2R: 
 "[|monofun(MF2(f)); chain(Y)|] ==> chain(%i. MF2 f (Y i))"
-apply (erule ch2ch_monofun)
-apply assumption
-done
+by (erule ch2ch_monofun)
 
 lemma ch2ch_MF2LR: 
 "[|monofun(MF2); !f. monofun(MF2(f)); chain(F); chain(Y)|] ==>  
@@ -218,11 +160,10 @@
 apply (rule trans_less)
 apply (erule ch2ch_MF2L [THEN chainE])
 apply assumption
-apply (rule monofunE [THEN spec, THEN spec, THEN mp], erule spec)
+apply (rule monofunE [rule_format], erule spec)
 apply (erule chainE)
 done
 
-
 lemma ch2ch_lubMF2R: 
 "[|monofun(MF2::('a::po=>'b::po=>'c::cpo)); 
    !f. monofun(MF2(f)::('b::po=>'c::cpo)); 
@@ -233,13 +174,12 @@
 apply assumption
 apply (rule ch2ch_MF2R, erule spec)
 apply assumption
-apply (intro strip)
+apply (rule allI)
 apply (rule chainE)
 apply (erule ch2ch_MF2L)
 apply assumption
 done
 
-
 lemma ch2ch_lubMF2L: 
 "[|monofun(MF2::('a::po=>'b::po=>'c::cpo)); 
    !f. monofun(MF2(f)::('b::po=>'c::cpo)); 
@@ -250,27 +190,25 @@
 apply assumption
 apply (erule ch2ch_MF2L)
 apply assumption
-apply (intro strip)
+apply (rule allI)
 apply (rule chainE)
 apply (rule ch2ch_MF2R, erule spec)
 apply assumption
 done
 
-
 lemma lub_MF2_mono: 
 "[|monofun(MF2::('a::po=>'b::po=>'c::cpo)); 
    !f. monofun(MF2(f)::('b::po=>'c::cpo)); 
         chain(F)|] ==>  
         monofun(% x. lub(range(% j. MF2 (F j) (x))))"
-apply (rule monofunI)
-apply (intro strip)
+apply (rule monofunI [rule_format])
 apply (rule lub_mono)
 apply (erule ch2ch_MF2L)
 apply assumption
 apply (erule ch2ch_MF2L)
 apply assumption
-apply (intro strip)
-apply (rule monofunE [THEN spec, THEN spec, THEN mp], erule spec)
+apply (rule allI)
+apply (rule monofunE [rule_format], erule spec)
 apply assumption
 done
 
@@ -289,7 +227,7 @@
 apply assumption
 apply (erule ch2ch_lubMF2L)
 apply (assumption+)
-apply (intro strip)
+apply (rule allI)
 apply (rule is_ub_thelub)
 apply (erule ch2ch_MF2L)
 apply assumption
@@ -301,13 +239,12 @@
 apply assumption
 apply (erule ch2ch_lubMF2R)
 apply (assumption+)
-apply (intro strip)
+apply (rule allI)
 apply (rule is_ub_thelub)
 apply (rule ch2ch_MF2R, erule spec)
 apply assumption
 done
 
-
 lemma diag_lubMF2_1: 
 "[|monofun(MF2::('a::po=>'b::po=>'c::cpo)); 
    !f. monofun(MF2(f)::('b::po=>'c::cpo)); 
@@ -342,7 +279,7 @@
 apply (assumption+)
 apply (erule ch2ch_lubMF2L)
 apply (assumption+)
-apply (intro strip)
+apply (rule allI)
 apply (rule is_ub_thelub)
 apply (erule ch2ch_MF2L)
 apply assumption
@@ -361,11 +298,10 @@
 apply (assumption+)
 done
 
-
-(* ------------------------------------------------------------------------ *)
-(* The following results are about a curried function that is continuous    *)
-(* in both arguments                                                        *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  The following results are about a curried function that is continuous
+  in both arguments
+*}
 
 lemma contlub_CF2:
 assumes prem1: "cont(CF2)"
@@ -385,18 +321,15 @@
 apply (auto simp add: cont2mono prems)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* The following results are about application for functions in 'a=>'b      *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  The following results are about application for functions in @{typ "'a=>'b"}
+*}
 
 lemma monofun_fun_fun: "f1 << f2 ==> f1(x) << f2(x)"
-apply (erule less_fun [THEN iffD1, THEN spec])
-done
+by (erule less_fun [THEN iffD1, THEN spec])
 
 lemma monofun_fun_arg: "[|monofun(f); x1 << x2|] ==> f(x1) << f(x2)"
-apply (erule monofunE [THEN spec, THEN spec, THEN mp])
-apply assumption
-done
+by (erule monofunE [THEN spec, THEN spec, THEN mp])
 
 lemma monofun_fun: "[|monofun(f1); monofun(f2); f1 << f2; x1 << x2|] ==> f1(x1) << f2(x2)"
 apply (rule trans_less)
@@ -405,15 +338,13 @@
 apply (erule monofun_fun_fun)
 done
 
-
-(* ------------------------------------------------------------------------ *)
-(* The following results are about the propagation of monotonicity and      *)
-(* continuity                                                               *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  The following results are about the propagation of monotonicity and
+  continuity
+*}
 
 lemma mono2mono_MF1L: "[|monofun(c1)|] ==> monofun(%x. c1 x y)"
-apply (rule monofunI)
-apply (intro strip)
+apply (rule monofunI [rule_format])
 apply (erule monofun_fun_arg [THEN monofun_fun_fun])
 apply assumption
 done
@@ -421,8 +352,7 @@
 lemma cont2cont_CF1L: "[|cont(c1)|] ==> cont(%x. c1 x y)"
 apply (rule monocontlub2cont)
 apply (erule cont2mono [THEN mono2mono_MF1L])
-apply (rule contlubI)
-apply (intro strip)
+apply (rule contlubI [rule_format])
 apply (frule asm_rl)
 apply (erule cont2contlub [THEN contlubE, THEN spec, THEN mp, THEN ssubst])
 apply assumption
@@ -436,8 +366,7 @@
 (*********  Note "(%x.%y.c1 x y) = c1" ***********)
 
 lemma mono2mono_MF1L_rev: "!y. monofun(%x. c1 x y) ==> monofun(c1)"
-apply (rule monofunI)
-apply (intro strip)
+apply (rule monofunI [rule_format])
 apply (rule less_fun [THEN iffD2])
 apply (blast dest: monofunE)
 done
@@ -446,8 +375,7 @@
 apply (rule monocontlub2cont)
 apply (rule cont2mono [THEN allI, THEN mono2mono_MF1L_rev])
 apply (erule spec)
-apply (rule contlubI)
-apply (intro strip)
+apply (rule contlubI [rule_format])
 apply (rule ext)
 apply (subst thelub_fun)
 apply (rule cont2mono [THEN allI, THEN mono2mono_MF1L_rev, THEN ch2ch_monofun])
@@ -456,10 +384,10 @@
 apply (blast dest: cont2contlub [THEN contlubE])
 done
 
-(* ------------------------------------------------------------------------ *)
-(* What D.A.Schmidt calls continuity of abstraction                         *)
-(* never used here                                                          *)
-(* ------------------------------------------------------------------------ *)
+text {*
+  What D.A.Schmidt calls continuity of abstraction
+  never used here
+*}
 
 lemma contlub_abstraction: 
 "[|chain(Y::nat=>'a);!y. cont(%x.(c::'a::cpo=>'b::cpo=>'c::cpo) x y)|] ==> 
@@ -476,21 +404,18 @@
 
 lemma mono2mono_app: "[|monofun(ft);!x. monofun(ft(x));monofun(tt)|] ==> 
          monofun(%x.(ft(x))(tt(x)))"
-apply (rule monofunI)
-apply (intro strip)
+apply (rule monofunI [rule_format])
 apply (rule_tac ?f1.0 = "ft(x)" and ?f2.0 = "ft(y)" in monofun_fun)
 apply (erule spec)
 apply (erule spec)
-apply (erule monofunE [THEN spec, THEN spec, THEN mp])
+apply (erule monofunE [rule_format])
 apply assumption
-apply (erule monofunE [THEN spec, THEN spec, THEN mp])
+apply (erule monofunE [rule_format])
 apply assumption
 done
 
-
 lemma cont2contlub_app: "[|cont(ft);!x. cont(ft(x));cont(tt)|] ==> contlub(%x.(ft(x))(tt(x)))"
-apply (rule contlubI)
-apply (intro strip)
+apply (rule contlubI [rule_format])
 apply (rule_tac f3 = "tt" in contlubE [THEN spec, THEN mp, THEN ssubst])
 apply (erule cont2contlub)
 apply assumption
@@ -500,70 +425,54 @@
 apply assumption
 done
 
-
 lemma cont2cont_app: "[|cont(ft); !x. cont(ft(x)); cont(tt)|] ==> cont(%x.(ft(x))(tt(x)))"
 apply (blast intro: monocontlub2cont mono2mono_app cont2mono cont2contlub_app)
 done
 
-
 lemmas cont2cont_app2 = cont2cont_app[OF _ allI]
 (*  [| cont ?ft; !!x. cont (?ft x); cont ?tt |] ==> *)
 (*        cont (%x. ?ft x (?tt x))                    *)
 
 
-(* ------------------------------------------------------------------------ *)
-(* The identity function is continuous                                      *)
-(* ------------------------------------------------------------------------ *)
+text {* The identity function is continuous *}
 
 lemma cont_id: "cont(% x. x)"
-apply (rule contI)
-apply (intro strip)
+apply (rule contI [rule_format])
 apply (erule thelubE)
 apply (rule refl)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* constant functions are continuous                                        *)
-(* ------------------------------------------------------------------------ *)
+text {* constant functions are continuous *}
 
 lemma cont_const: "cont(%x. c)"
-apply (unfold cont)
-apply (intro strip)
+apply (rule contI [rule_format])
 apply (blast intro: is_lubI ub_rangeI dest: ub_rangeD)
 done
 
+lemma cont2cont_app3: "[|cont(f); cont(t) |] ==> cont(%x. f(t(x)))"
+by (best intro: cont2cont_app2 cont_const)
 
-lemma cont2cont_app3: "[|cont(f); cont(t) |] ==> cont(%x. f(t(x)))"
-apply (best intro: cont2cont_app2 cont_const)
-done
-
-(* ------------------------------------------------------------------------ *)
-(* A non-emptyness result for Cfun                                          *)
-(* ------------------------------------------------------------------------ *)
+text {* A non-emptiness result for Cfun *}
 
 lemma CfunI: "?x:Collect cont"
 apply (rule CollectI)
 apply (rule cont_const)
 done
 
-(* ------------------------------------------------------------------------ *)
-(* some properties of flat                                                  *)
-(* ------------------------------------------------------------------------ *)
+text {* some properties of flat *}
 
 lemma flatdom2monofun: "f UU = UU ==> monofun (f::'a::flat=>'b::pcpo)"
-
-apply (unfold monofun)
-apply (intro strip)
-apply (drule ax_flat [THEN spec, THEN spec, THEN mp])
+apply (rule monofunI [rule_format])
+apply (drule ax_flat [rule_format])
 apply auto
 done
 
 declare range_composition [simp del]
+
 lemma chfindom_monofun2cont: "monofun f ==> cont(f::'a::chfin=>'b::pcpo)"
 apply (rule monocontlub2cont)
 apply assumption
-apply (rule contlubI)
-apply (intro strip)
+apply (rule contlubI [rule_format])
 apply (frule chfin2finch)
 apply (rule antisym_less)
 apply (clarsimp simp add: finite_chain_def maxinch_is_thelub)