src/HOL/Real/HahnBanach/FunctionOrder.thy
changeset 9374 153853af318b
parent 9035 371f023d3dbd
child 9379 21cfeae6659d
--- a/src/HOL/Real/HahnBanach/FunctionOrder.thy	Sun Jul 16 21:00:32 2000 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionOrder.thy	Mon Jul 17 13:58:18 2000 +0200
@@ -12,7 +12,7 @@
 text{* We define the \emph{graph} of a (real) function $f$ with
 domain $F$ as the set 
 \[
-\{(x, f\ap x). \ap x:F\}
+\{(x, f\ap x). \ap x \in F\}
 \]
 So we are modeling partial functions by specifying the domain and 
 the mapping function. We use the term ``function'' also for its graph.
@@ -22,18 +22,18 @@
 
 constdefs
   graph :: "['a set, 'a => real] => 'a graph "
-  "graph F f == {(x, f x) | x. x:F}" 
+  "graph F f == {(x, f x) | x. x \<in> F}" 
 
-lemma graphI [intro??]: "x:F ==> (x, f x) : graph F f"
+lemma graphI [intro??]: "x \<in> F ==> (x, f x) \<in> graph F f"
   by (unfold graph_def, intro CollectI exI) force
 
-lemma graphI2 [intro??]: "x:F ==> EX t: (graph F f). t = (x, f x)"
+lemma graphI2 [intro??]: "x \<in> F ==> \<exists>t\<in> (graph F f). t = (x, f x)"
   by (unfold graph_def, force)
 
-lemma graphD1 [intro??]: "(x, y): graph F f ==> x:F"
+lemma graphD1 [intro??]: "(x, y) \<in> graph F f ==> x \<in> F"
   by (unfold graph_def, elim CollectE exE) force
 
-lemma graphD2 [intro??]: "(x, y): graph H h ==> y = h x"
+lemma graphD2 [intro??]: "(x, y) \<in> graph H h ==> y = h x"
   by (unfold graph_def, elim CollectE exE) force 
 
 subsection {* Functions ordered by domain extension *}
@@ -42,12 +42,12 @@
 $h$ is a subset of the graph of $h'$.*}
 
 lemma graph_extI: 
-  "[| !! x. x: H ==> h x = h' x; H <= H'|]
+  "[| !! x. x \<in> H ==> h x = h' x; H <= H'|]
   ==> graph H h <= graph H' h'"
   by (unfold graph_def, force)
 
 lemma graph_extD1 [intro??]: 
-  "[| graph H h <= graph H' h'; x:H |] ==> h x = h' x"
+  "[| graph H h <= graph H' h'; x \<in> H |] ==> h x = h' x"
   by (unfold graph_def, force)
 
 lemma graph_extD2 [intro??]: 
@@ -61,10 +61,10 @@
 
 constdefs
   domain :: "'a graph => 'a set" 
-  "domain g == {x. EX y. (x, y):g}"
+  "domain g == {x. \<exists>y. (x, y) \<in> g}"
 
   funct :: "'a graph => ('a => real)"
-  "funct g == \<lambda>x. (SOME y. (x, y):g)"
+  "funct g == \<lambda>x. (SOME y. (x, y) \<in> g)"
 
 (*text{*  The equations 
 \begin{matharray}
@@ -78,16 +78,16 @@
 if the relation induced by $g$ is unique. *}
 
 lemma graph_domain_funct: 
-  "(!!x y z. (x, y):g ==> (x, z):g ==> z = y) 
+  "(!!x y z. (x, y) \<in> g ==> (x, z) \<in> g ==> z = y) 
   ==> graph (domain g) (funct g) = g"
 proof (unfold domain_def funct_def graph_def, auto)
-  fix a b assume "(a, b) : g"
-  show "(a, SOME y. (a, y) : g) : g" by (rule selectI2)
-  show "EX y. (a, y) : g" ..
-  assume uniq: "!!x y z. (x, y):g ==> (x, z):g ==> z = y"
-  show "b = (SOME y. (a, y) : g)"
+  fix a b assume "(a, b) \<in> g"
+  show "(a, SOME y. (a, y) \<in> g) \<in> g" by (rule selectI2)
+  show "\<exists>y. (a, y) \<in> g" ..
+  assume uniq: "!!x y z. (x, y) \<in> g ==> (x, z) \<in> g ==> z = y"
+  show "b = (SOME y. (a, y) \<in> g)"
   proof (rule select_equality [RS sym])
-    fix y assume "(a, y):g" show "y = b" by (rule uniq)
+    fix y assume "(a, y) \<in> g" show "y = b" by (rule uniq)
   qed
 qed
 
@@ -102,40 +102,40 @@
 
 constdefs
   norm_pres_extensions :: 
-    "['a::{minus, plus} set, 'a  => real, 'a set, 'a => real] 
+    "['a::{plus, minus, zero} set, 'a  => real, 'a set, 'a => real] 
     => 'a graph set"
     "norm_pres_extensions E p F f 
-    == {g. EX H h. graph H h = g 
-                & is_linearform H h 
-                & is_subspace H E
-                & is_subspace F H
-                & graph F f <= graph H h
-                & (ALL x:H. h x <= p x)}"
+    == {g. \<exists>H h. graph H h = g 
+                \<and> is_linearform H h 
+                \<and> is_subspace H E
+                \<and> is_subspace F H
+                \<and> graph F f <= graph H h
+                \<and> (\<forall>x \<in> H. h x <= p x)}"
                        
 lemma norm_pres_extension_D:  
-  "g : norm_pres_extensions E p F f
-  ==> EX H h. graph H h = g 
-            & is_linearform H h 
-            & is_subspace H E
-            & is_subspace F H
-            & graph F f <= graph H h
-            & (ALL x:H. h x <= p x)"
+  "g \<in> norm_pres_extensions E p F f
+  ==> \<exists>H h. graph H h = g 
+            \<and> is_linearform H h 
+            \<and> is_subspace H E
+            \<and> is_subspace F H
+            \<and> graph F f <= graph H h
+            \<and> (\<forall>x \<in> H. h x <= p x)"
   by (unfold norm_pres_extensions_def) force
 
 lemma norm_pres_extensionI2 [intro]:  
   "[| is_linearform H h; is_subspace H E; is_subspace F H;
-  graph F f <= graph H h; ALL x:H. h x <= p x |]
-  ==> (graph H h : norm_pres_extensions E p F f)"
+  graph F f <= graph H h; \<forall>x \<in> H. h x <= p x |]
+  ==> (graph H h \<in> norm_pres_extensions E p F f)"
  by (unfold norm_pres_extensions_def) force
 
 lemma norm_pres_extensionI [intro]:  
-  "EX H h. graph H h = g 
-         & is_linearform H h    
-         & is_subspace H E
-         & is_subspace F H
-         & graph F f <= graph H h
-         & (ALL x:H. h x <= p x)
-  ==> g: norm_pres_extensions E p F f"
+  "\<exists>H h. graph H h = g 
+         \<and> is_linearform H h    
+         \<and> is_subspace H E
+         \<and> is_subspace F H
+         \<and> graph F f <= graph H h
+         \<and> (\<forall>x \<in> H. h x <= p x)
+  ==> g\<in> norm_pres_extensions E p F f"
   by (unfold norm_pres_extensions_def) force
 
 end
\ No newline at end of file