src/HOL/Real/HahnBanach/VectorSpace.thy
changeset 9374 153853af318b
parent 9035 371f023d3dbd
child 9379 21cfeae6659d
--- a/src/HOL/Real/HahnBanach/VectorSpace.thy	Sun Jul 16 21:00:32 2000 +0200
+++ b/src/HOL/Real/HahnBanach/VectorSpace.thy	Mon Jul 17 13:58:18 2000 +0200
@@ -15,24 +15,11 @@
 element $\zero$ is defined. *}
 
 consts
-  prod  :: "[real, 'a] => 'a"                       (infixr "'(*')" 70)
-  zero  :: 'a                                       ("00")
+  prod  :: "[real, 'a::{plus, minus, zero}] => 'a"        (infixr "'(*')" 70)
 
 syntax (symbols)
-  prod  :: "[real, 'a] => 'a"                       (infixr "\<prod>" 70)
-  zero  :: 'a                                       ("\<zero>")
-
-(* text {* The unary and binary minus can be considered as 
-abbreviations: *}
-*)
+  prod  :: "[real, 'a] => 'a"                       (infixr "\<cdot>" 70)
 
-(***
-constdefs 
-  negate :: "'a => 'a"                           ("- _" [100] 100)
-  "- x == (- #1) ( * ) x"
-  diff :: "'a => 'a => 'a"                       (infixl "-" 68)
-  "x - y == x + - y";
-***)
 
 subsection {* Vector space laws *}
 
@@ -47,43 +34,43 @@
 *}
 
 constdefs
-  is_vectorspace :: "('a::{plus,minus}) set => bool"
-  "is_vectorspace V == V ~= {} 
-   & (ALL x:V. ALL y:V. ALL z:V. ALL a b.
-        x + y : V                                 
-      & a (*) x : V                                 
-      & (x + y) + z = x + (y + z)             
-      & x + y = y + x                           
-      & x - x = 00                               
-      & 00 + x = x                               
-      & a (*) (x + y) = a (*) x + a (*) y       
-      & (a + b) (*) x = a (*) x + b (*) x         
-      & (a * b) (*) x = a (*) b (*) x               
-      & #1 (*) x = x
-      & - x = (- #1) (*) x
-      & x - y = x + - y)"                             
+  is_vectorspace :: "('a::{plus, minus, zero}) set => bool"
+  "is_vectorspace V == V \<noteq> {}
+   \<and> (\<forall>x \<in> V. \<forall>y \<in> V. \<forall>z \<in> V. \<forall>a b.
+        x + y \<in> V                                 
+      \<and> a \<cdot> x \<in> V                                 
+      \<and> (x + y) + z = x + (y + z)             
+      \<and> x + y = y + x                           
+      \<and> x - x = 0                               
+      \<and> 0 + x = x                               
+      \<and> a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y       
+      \<and> (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x         
+      \<and> (a * b) \<cdot> x = a \<cdot> b \<cdot> x               
+      \<and> #1 \<cdot> x = x
+      \<and> - x = (- #1) \<cdot> x
+      \<and> x - y = x + - y)"                             
 
 text_raw {* \medskip *}
 text {* The corresponding introduction rule is:*}
 
 lemma vsI [intro]:
-  "[| 00:V; 
-  ALL x:V. ALL y:V. x + y : V; 
-  ALL x:V. ALL a. a (*) x : V;  
-  ALL x:V. ALL y:V. ALL z:V. (x + y) + z = x + (y + z);
-  ALL x:V. ALL y:V. x + y = y + x;
-  ALL x:V. x - x = 00;
-  ALL x:V. 00 + x = x;
-  ALL x:V. ALL y:V. ALL a. a (*) (x + y) = a (*) x + a (*) y;
-  ALL x:V. ALL a b. (a + b) (*) x = a (*) x + b (*) x;
-  ALL x:V. ALL a b. (a * b) (*) x = a (*) b (*) x; 
-  ALL x:V. #1 (*) x = x; 
-  ALL x:V. - x = (- #1) (*) x; 
-  ALL x:V. ALL y:V. x - y = x + - y |] ==> is_vectorspace V"
+  "[| 0 \<in> V; 
+  \<forall>x \<in> V. \<forall>y \<in> V. x + y \<in> V; 
+  \<forall>x \<in> V. \<forall>a. a \<cdot> x \<in> V;  
+  \<forall>x \<in> V. \<forall>y \<in> V. \<forall>z \<in> V. (x + y) + z = x + (y + z);
+  \<forall>x \<in> V. \<forall>y \<in> V. x + y = y + x;
+  \<forall>x \<in> V. x - x = 0;
+  \<forall>x \<in> V. 0 + x = x;
+  \<forall>x \<in> V. \<forall>y \<in> V. \<forall>a. a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y;
+  \<forall>x \<in> V. \<forall>a b. (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x;
+  \<forall>x \<in> V. \<forall>a b. (a * b) \<cdot> x = a \<cdot> b \<cdot> x; 
+  \<forall>x \<in> V. #1 \<cdot> x = x; 
+  \<forall>x \<in> V. - x = (- #1) \<cdot> x; 
+  \<forall>x \<in> V. \<forall>y \<in> V. x - y = x + - y |] ==> is_vectorspace V"
 proof (unfold is_vectorspace_def, intro conjI ballI allI)
   fix x y z 
-  assume "x:V" "y:V" "z:V"
-    "ALL x:V. ALL y:V. ALL z:V. x + y + z = x + (y + z)"
+  assume "x \<in> V" "y \<in> V" "z \<in> V"
+    "\<forall>x \<in> V. \<forall>y \<in> V. \<forall>z \<in> V. x + y + z = x + (y + z)"
   thus "x + y + z =  x + (y + z)" by (elim bspec[elimify])
 qed force+
 
@@ -91,58 +78,58 @@
 text {* The corresponding destruction rules are: *}
 
 lemma negate_eq1: 
-  "[| is_vectorspace V; x:V |] ==> - x = (- #1) (*) x"
+  "[| is_vectorspace V; x \<in> V |] ==> - x = (- #1) \<cdot> x"
   by (unfold is_vectorspace_def) simp
 
 lemma diff_eq1: 
-  "[| is_vectorspace V; x:V; y:V |] ==> x - y = x + - y"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> x - y = x + - y"
   by (unfold is_vectorspace_def) simp 
 
 lemma negate_eq2: 
-  "[| is_vectorspace V; x:V |] ==> (- #1) (*) x = - x"
+  "[| is_vectorspace V; x \<in> V |] ==> (- #1) \<cdot> x = - x"
   by (unfold is_vectorspace_def) simp
 
 lemma negate_eq2a: 
-  "[| is_vectorspace V; x:V |] ==> #-1 (*) x = - x"
+  "[| is_vectorspace V; x \<in> V |] ==> #-1 \<cdot> x = - x"
   by (unfold is_vectorspace_def) simp
 
 lemma diff_eq2: 
-  "[| is_vectorspace V; x:V; y:V |] ==> x + - y = x - y"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> x + - y = x - y"
   by (unfold is_vectorspace_def) simp  
 
-lemma vs_not_empty [intro??]: "is_vectorspace V ==> (V ~= {})" 
+lemma vs_not_empty [intro??]: "is_vectorspace V ==> (V \<noteq> {})" 
   by (unfold is_vectorspace_def) simp
  
 lemma vs_add_closed [simp, intro??]: 
-  "[| is_vectorspace V; x:V; y:V |] ==> x + y : V" 
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> x + y \<in> V" 
   by (unfold is_vectorspace_def) simp
 
 lemma vs_mult_closed [simp, intro??]: 
-  "[| is_vectorspace V; x:V |] ==> a (*) x : V" 
+  "[| is_vectorspace V; x \<in> V |] ==> a \<cdot> x \<in> V" 
   by (unfold is_vectorspace_def) simp
 
 lemma vs_diff_closed [simp, intro??]: 
- "[| is_vectorspace V; x:V; y:V |] ==> x - y : V"
+ "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> x - y \<in> V"
   by (simp add: diff_eq1 negate_eq1)
 
 lemma vs_neg_closed  [simp, intro??]: 
-  "[| is_vectorspace V; x:V |] ==> - x : V"
+  "[| is_vectorspace V; x \<in> V |] ==> - x \<in> V"
   by (simp add: negate_eq1)
 
 lemma vs_add_assoc [simp]:  
-  "[| is_vectorspace V; x:V; y:V; z:V |]
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |]
    ==> (x + y) + z = x + (y + z)"
   by (unfold is_vectorspace_def) fast
 
 lemma vs_add_commute [simp]: 
-  "[| is_vectorspace V; x:V; y:V |] ==> y + x = x + y"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> y + x = x + y"
   by (unfold is_vectorspace_def) simp
 
 lemma vs_add_left_commute [simp]:
-  "[| is_vectorspace V; x:V; y:V; z:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] 
   ==> x + (y + z) = y + (x + z)"
 proof -
-  assume "is_vectorspace V" "x:V" "y:V" "z:V"
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "z \<in> V"
   hence "x + (y + z) = (x + y) + z" 
     by (simp only: vs_add_assoc)
   also have "... = (y + x) + z" by (simp! only: vs_add_commute)
@@ -153,78 +140,78 @@
 theorems vs_add_ac = vs_add_assoc vs_add_commute vs_add_left_commute
 
 lemma vs_diff_self [simp]: 
-  "[| is_vectorspace V; x:V |] ==>  x - x = 00" 
+  "[| is_vectorspace V; x \<in> V |] ==>  x - x = 0" 
   by (unfold is_vectorspace_def) simp
 
 text {* The existence of the zero element of a vector space
 follows from the non-emptiness of carrier set. *}
 
-lemma zero_in_vs [simp, intro]: "is_vectorspace V ==> 00:V"
+lemma zero_in_vs [simp, intro]: "is_vectorspace V ==> 0 \<in> V"
 proof - 
   assume "is_vectorspace V"
-  have "V ~= {}" ..
-  hence "EX x. x:V" by force
+  have "V \<noteq> {}" ..
+  hence "\<exists>x. x \<in> V" by force
   thus ?thesis 
   proof 
-    fix x assume "x:V" 
-    have "00 = x - x" by (simp!)
-    also have "... : V" by (simp! only: vs_diff_closed)
+    fix x assume "x \<in> V" 
+    have "0 = x - x" by (simp!)
+    also have "... \<in> V" by (simp! only: vs_diff_closed)
     finally show ?thesis .
   qed
 qed
 
 lemma vs_add_zero_left [simp]: 
-  "[| is_vectorspace V; x:V |] ==>  00 + x = x"
+  "[| is_vectorspace V; x \<in> V |] ==>  0 + x = x"
   by (unfold is_vectorspace_def) simp
 
 lemma vs_add_zero_right [simp]: 
-  "[| is_vectorspace V; x:V |] ==>  x + 00 = x"
+  "[| is_vectorspace V; x \<in> V |] ==>  x + 0 = x"
 proof -
-  assume "is_vectorspace V" "x:V"
-  hence "x + 00 = 00 + x" by simp
+  assume "is_vectorspace V" "x \<in> V"
+  hence "x + 0 = 0 + x" by simp
   also have "... = x" by (simp!)
   finally show ?thesis .
 qed
 
 lemma vs_add_mult_distrib1: 
-  "[| is_vectorspace V; x:V; y:V |] 
-  ==> a (*) (x + y) = a (*) x + a (*) y"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] 
+  ==> a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y"
   by (unfold is_vectorspace_def) simp
 
 lemma vs_add_mult_distrib2: 
-  "[| is_vectorspace V; x:V |] 
-  ==> (a + b) (*) x = a (*) x + b (*) x" 
+  "[| is_vectorspace V; x \<in> V |] 
+  ==> (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x" 
   by (unfold is_vectorspace_def) simp
 
 lemma vs_mult_assoc: 
-  "[| is_vectorspace V; x:V |] ==> (a * b) (*) x = a (*) (b (*) x)"
+  "[| is_vectorspace V; x \<in> V |] ==> (a * b) \<cdot> x = a \<cdot> (b \<cdot> x)"
   by (unfold is_vectorspace_def) simp
 
 lemma vs_mult_assoc2 [simp]: 
- "[| is_vectorspace V; x:V |] ==> a (*) b (*) x = (a * b) (*) x"
+ "[| is_vectorspace V; x \<in> V |] ==> a \<cdot> b \<cdot> x = (a * b) \<cdot> x"
   by (simp only: vs_mult_assoc)
 
 lemma vs_mult_1 [simp]: 
-  "[| is_vectorspace V; x:V |] ==> #1 (*) x = x" 
+  "[| is_vectorspace V; x \<in> V |] ==> #1 \<cdot> x = x" 
   by (unfold is_vectorspace_def) simp
 
 lemma vs_diff_mult_distrib1: 
-  "[| is_vectorspace V; x:V; y:V |] 
-  ==> a (*) (x - y) = a (*) x - a (*) y"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] 
+  ==> a \<cdot> (x - y) = a \<cdot> x - a \<cdot> y"
   by (simp add: diff_eq1 negate_eq1 vs_add_mult_distrib1)
 
 lemma vs_diff_mult_distrib2: 
-  "[| is_vectorspace V; x:V |] 
-  ==> (a - b) (*) x = a (*) x - (b (*) x)"
+  "[| is_vectorspace V; x \<in> V |] 
+  ==> (a - b) \<cdot> x = a \<cdot> x - (b \<cdot> x)"
 proof -
-  assume "is_vectorspace V" "x:V"
-  have " (a - b) (*) x = (a + - b) (*) x" 
+  assume "is_vectorspace V" "x \<in> V"
+  have " (a - b) \<cdot> x = (a + - b) \<cdot> x" 
     by (unfold real_diff_def, simp)
-  also have "... = a (*) x + (- b) (*) x" 
+  also have "... = a \<cdot> x + (- b) \<cdot> x" 
     by (rule vs_add_mult_distrib2)
-  also have "... = a (*) x + - (b (*) x)" 
+  also have "... = a \<cdot> x + - (b \<cdot> x)" 
     by (simp! add: negate_eq1)
-  also have "... = a (*) x - (b (*) x)" 
+  also have "... = a \<cdot> x - (b \<cdot> x)" 
     by (simp! add: diff_eq1)
   finally show ?thesis .
 qed
@@ -234,40 +221,40 @@
 text{* Further derived laws: *}
 
 lemma vs_mult_zero_left [simp]: 
-  "[| is_vectorspace V; x:V |] ==> #0 (*) x = 00"
+  "[| is_vectorspace V; x \<in> V |] ==> #0 \<cdot> x = 0"
 proof -
-  assume "is_vectorspace V" "x:V"
-  have  "#0 (*) x = (#1 - #1) (*) x" by simp
-  also have "... = (#1 + - #1) (*) x" by simp
-  also have "... =  #1 (*) x + (- #1) (*) x" 
+  assume "is_vectorspace V" "x \<in> V"
+  have  "#0 \<cdot> x = (#1 - #1) \<cdot> x" by simp
+  also have "... = (#1 + - #1) \<cdot> x" by simp
+  also have "... =  #1 \<cdot> x + (- #1) \<cdot> x" 
     by (rule vs_add_mult_distrib2)
-  also have "... = x + (- #1) (*) x" by (simp!)
+  also have "... = x + (- #1) \<cdot> x" by (simp!)
   also have "... = x + - x" by (simp! add: negate_eq2a)
   also have "... = x - x" by (simp! add: diff_eq2)
-  also have "... = 00" by (simp!)
+  also have "... = 0" by (simp!)
   finally show ?thesis .
 qed
 
 lemma vs_mult_zero_right [simp]: 
-  "[| is_vectorspace (V:: 'a::{plus, minus} set) |] 
-  ==> a (*) 00 = (00::'a)"
+  "[| is_vectorspace (V:: 'a::{plus, minus, zero} set) |] 
+  ==> a \<cdot> 0 = (0::'a)"
 proof -
   assume "is_vectorspace V"
-  have "a (*) 00 = a (*) (00 - (00::'a))" by (simp!)
-  also have "... =  a (*) 00 - a (*) 00"
+  have "a \<cdot> 0 = a \<cdot> (0 - (0::'a))" by (simp!)
+  also have "... =  a \<cdot> 0 - a \<cdot> 0"
      by (rule vs_diff_mult_distrib1) (simp!)+
-  also have "... = 00" by (simp!)
+  also have "... = 0" by (simp!)
   finally show ?thesis .
 qed
 
 lemma vs_minus_mult_cancel [simp]:  
-  "[| is_vectorspace V; x:V |] ==> (- a) (*) - x = a (*) x"
+  "[| is_vectorspace V; x \<in> V |] ==> (- a) \<cdot> - x = a \<cdot> x"
   by (simp add: negate_eq1)
 
 lemma vs_add_minus_left_eq_diff: 
-  "[| is_vectorspace V; x:V; y:V |] ==> - x + y = y - x"
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> - x + y = y - x"
 proof - 
-  assume "is_vectorspace V" "x:V" "y:V"
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V"
   have "- x + y = y + - x" 
     by (simp! add: vs_add_commute [RS sym, of V "- x"])
   also have "... = y - x" by (simp! add: diff_eq1)
@@ -275,63 +262,63 @@
 qed
 
 lemma vs_add_minus [simp]: 
-  "[| is_vectorspace V; x:V |] ==> x + - x = 00"
+  "[| is_vectorspace V; x \<in> V |] ==> x + - x = 0"
   by (simp! add: diff_eq2)
 
 lemma vs_add_minus_left [simp]: 
-  "[| is_vectorspace V; x:V |] ==> - x + x = 00"
+  "[| is_vectorspace V; x \<in> V |] ==> - x + x = 0"
   by (simp! add: diff_eq2)
 
 lemma vs_minus_minus [simp]: 
-  "[| is_vectorspace V; x:V |] ==> - (- x) = x"
+  "[| is_vectorspace V; x \<in> V |] ==> - (- x) = x"
   by (simp add: negate_eq1)
 
 lemma vs_minus_zero [simp]: 
-  "is_vectorspace (V::'a::{minus, plus} set) ==> - (00::'a) = 00" 
+  "is_vectorspace (V::'a::{plus, minus, zero} set) ==> - (0::'a) = 0" 
   by (simp add: negate_eq1)
 
 lemma vs_minus_zero_iff [simp]:
-  "[| is_vectorspace V; x:V |] ==> (- x = 00) = (x = 00)" 
+  "[| is_vectorspace V; x \<in> V |] ==> (- x = 0) = (x = 0)" 
   (concl is "?L = ?R")
 proof -
-  assume "is_vectorspace V" "x:V"
+  assume "is_vectorspace V" "x \<in> V"
   show "?L = ?R"
   proof
     have "x = - (- x)" by (rule vs_minus_minus [RS sym])
     also assume ?L
-    also have "- ... = 00" by (rule vs_minus_zero)
+    also have "- ... = 0" by (rule vs_minus_zero)
     finally show ?R .
   qed (simp!)
 qed
 
 lemma vs_add_minus_cancel [simp]:  
-  "[| is_vectorspace V; x:V; y:V |] ==> x + (- x + y) = y" 
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> x + (- x + y) = y" 
   by (simp add: vs_add_assoc [RS sym] del: vs_add_commute) 
 
 lemma vs_minus_add_cancel [simp]: 
-  "[| is_vectorspace V; x:V; y:V |] ==> - x + (x + y) = y" 
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] ==> - x + (x + y) = y" 
   by (simp add: vs_add_assoc [RS sym] del: vs_add_commute) 
 
 lemma vs_minus_add_distrib [simp]:  
-  "[| is_vectorspace V; x:V; y:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V |] 
   ==> - (x + y) = - x + - y"
   by (simp add: negate_eq1 vs_add_mult_distrib1)
 
 lemma vs_diff_zero [simp]: 
-  "[| is_vectorspace V; x:V |] ==> x - 00 = x"
+  "[| is_vectorspace V; x \<in> V |] ==> x - 0 = x"
   by (simp add: diff_eq1)  
 
 lemma vs_diff_zero_right [simp]: 
-  "[| is_vectorspace V; x:V |] ==> 00 - x = - x"
+  "[| is_vectorspace V; x \<in> V |] ==> 0 - x = - x"
   by (simp add:diff_eq1)
 
 lemma vs_add_left_cancel:
-  "[| is_vectorspace V; x:V; y:V; z:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] 
    ==> (x + y = x + z) = (y = z)"  
   (concl is "?L = ?R")
 proof
-  assume "is_vectorspace V" "x:V" "y:V" "z:V"
-  have "y = 00 + y" by (simp!)
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "z \<in> V"
+  have "y = 0 + y" by (simp!)
   also have "... = - x + x + y" by (simp!)
   also have "... = - x + (x + y)" 
     by (simp! only: vs_add_assoc vs_neg_closed)
@@ -343,68 +330,67 @@
 qed force
 
 lemma vs_add_right_cancel: 
-  "[| is_vectorspace V; x:V; y:V; z:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] 
   ==> (y + x = z + x) = (y = z)"  
   by (simp only: vs_add_commute vs_add_left_cancel)
 
 lemma vs_add_assoc_cong: 
-  "[| is_vectorspace V; x:V; y:V; x':V; y':V; z:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; x' \<in> V; y' \<in> V; z \<in> V |] 
   ==> x + y = x' + y' ==> x + (y + z) = x' + (y' + z)"
   by (simp only: vs_add_assoc [RS sym]) 
 
 lemma vs_mult_left_commute: 
-  "[| is_vectorspace V; x:V; y:V; z:V |] 
-  ==> x (*) y (*) z = y (*) x (*) z"  
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] 
+  ==> x \<cdot> y \<cdot> z = y \<cdot> x \<cdot> z"  
   by (simp add: real_mult_commute)
 
-lemma vs_mult_zero_uniq :
-  "[| is_vectorspace V; x:V; a (*) x = 00; x ~= 00 |] ==> a = #0"
+lemma vs_mult_zero_uniq:
+  "[| is_vectorspace V; x \<in> V; a \<cdot> x = 0; x \<noteq> 0 |] ==> a = #0"
 proof (rule classical)
-  assume "is_vectorspace V" "x:V" "a (*) x = 00" "x ~= 00"
-  assume "a ~= #0"
-  have "x = (rinv a * a) (*) x" by (simp!)
-  also have "... = rinv a (*) (a (*) x)" by (rule vs_mult_assoc)
-  also have "... = rinv a (*) 00" by (simp!)
-  also have "... = 00" by (simp!)
-  finally have "x = 00" .
+  assume "is_vectorspace V" "x \<in> V" "a \<cdot> x = 0" "x \<noteq> 0"
+  assume "a \<noteq> #0"
+  have "x = (rinv a * a) \<cdot> x" by (simp!)
+  also have "... = rinv a \<cdot> (a \<cdot> x)" by (rule vs_mult_assoc)
+  also have "... = rinv a \<cdot> 0" by (simp!)
+  also have "... = 0" by (simp!)
+  finally have "x = 0" .
   thus "a = #0" by contradiction 
 qed
 
 lemma vs_mult_left_cancel: 
-  "[| is_vectorspace V; x:V; y:V; a ~= #0 |] ==> 
-  (a (*) x = a (*) y) = (x = y)"
+  "[| is_vectorspace V; x \<in> V; y \<in> V; a \<noteq> #0 |] ==> 
+  (a \<cdot> x = a \<cdot> y) = (x = y)"
   (concl is "?L = ?R")
 proof
-  assume "is_vectorspace V" "x:V" "y:V" "a ~= #0"
-  have "x = #1 (*) x" by (simp!)
-  also have "... = (rinv a * a) (*) x" by (simp!)
-  also have "... = rinv a (*) (a (*) x)" 
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "a \<noteq> #0"
+  have "x = #1 \<cdot> x" by (simp!)
+  also have "... = (rinv a * a) \<cdot> x" by (simp!)
+  also have "... = rinv a \<cdot> (a \<cdot> x)" 
     by (simp! only: vs_mult_assoc)
   also assume ?L
-  also have "rinv a (*) ... = y" by (simp!)
+  also have "rinv a \<cdot> ... = y" by (simp!)
   finally show ?R .
 qed simp
 
 lemma vs_mult_right_cancel: (*** forward ***)
-  "[| is_vectorspace V; x:V; x ~= 00 |] 
-  ==> (a (*) x = b (*) x) = (a = b)" (concl is "?L = ?R")
+  "[| is_vectorspace V; x \<in> V; x \<noteq> 0 |] 
+  ==> (a \<cdot> x = b \<cdot> x) = (a = b)" (concl is "?L = ?R")
 proof
-  assume "is_vectorspace V" "x:V" "x ~= 00"
-  have "(a - b) (*) x = a (*) x - b (*) x" 
+  assume "is_vectorspace V" "x \<in> V" "x \<noteq> 0"
+  have "(a - b) \<cdot> x = a \<cdot> x - b \<cdot> x" 
     by (simp! add: vs_diff_mult_distrib2)
-  also assume ?L hence "a (*) x - b (*) x = 00" by (simp!)
-  finally have "(a - b) (*) x = 00" . 
+  also assume ?L hence "a \<cdot> x - b \<cdot> x = 0" by (simp!)
+  finally have "(a - b) \<cdot> x = 0" . 
   hence "a - b = #0" by (simp! add: vs_mult_zero_uniq)
   thus "a = b" by (rule real_add_minus_eq)
 qed simp (*** 
 
-backward :
 lemma vs_mult_right_cancel: 
-  "[| is_vectorspace V; x:V; x ~= 00 |] ==>  
+  "[| is_vectorspace V; x:V; x \<noteq> 0 |] ==>  
   (a ( * ) x = b ( * ) x) = (a = b)"
   (concl is "?L = ?R");
 proof;
-  assume "is_vectorspace V" "x:V" "x ~= 00";
+  assume "is_vectorspace V" "x:V" "x \<noteq> 0";
   assume l: ?L; 
   show "a = b"; 
   proof (rule real_add_minus_eq);
@@ -412,8 +398,8 @@
     proof (rule vs_mult_zero_uniq);
       have "(a - b) ( * ) x = a ( * ) x - b ( * ) x";
         by (simp! add: vs_diff_mult_distrib2);
-      also; from l; have "a ( * ) x - b ( * ) x = 00"; by (simp!);
-      finally; show "(a - b) ( * ) x  = 00"; .; 
+      also; from l; have "a ( * ) x - b ( * ) x = 0"; by (simp!);
+      finally; show "(a - b) ( * ) x  = 0"; .; 
     qed;
   qed;
 next;
@@ -423,11 +409,11 @@
 **)
 
 lemma vs_eq_diff_eq: 
-  "[| is_vectorspace V; x:V; y:V; z:V |] ==> 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] ==> 
   (x = z - y) = (x + y = z)"
   (concl is "?L = ?R" )  
 proof -
-  assume vs: "is_vectorspace V" "x:V" "y:V" "z:V"
+  assume vs: "is_vectorspace V" "x \<in> V" "y \<in> V" "z \<in> V"
   show "?L = ?R"   
   proof
     assume ?L
@@ -435,7 +421,7 @@
     also have "... = z + - y + y" by (simp! add: diff_eq1)
     also have "... = z + (- y + y)" 
       by (rule vs_add_assoc) (simp!)+
-    also from vs have "... = z + 00" 
+    also from vs have "... = z + 0" 
       by (simp only: vs_add_minus_left)
     also from vs have "... = z" by (simp only: vs_add_zero_right)
     finally show ?R .
@@ -452,32 +438,32 @@
 qed
 
 lemma vs_add_minus_eq_minus: 
-  "[| is_vectorspace V; x:V; y:V; x + y = 00 |] ==> x = - y" 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; x + y = 0 |] ==> x = - y" 
 proof -
-  assume "is_vectorspace V" "x:V" "y:V" 
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" 
   have "x = (- y + y) + x" by (simp!)
   also have "... = - y + (x + y)" by (simp!)
-  also assume "x + y = 00"
-  also have "- y + 00 = - y" by (simp!)
+  also assume "x + y = 0"
+  also have "- y + 0 = - y" by (simp!)
   finally show "x = - y" .
 qed
 
 lemma vs_add_minus_eq: 
-  "[| is_vectorspace V; x:V; y:V; x - y = 00 |] ==> x = y" 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; x - y = 0 |] ==> x = y" 
 proof -
-  assume "is_vectorspace V" "x:V" "y:V" "x - y = 00"
-  assume "x - y = 00"
-  hence e: "x + - y = 00" by (simp! add: diff_eq1)
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "x - y = 0"
+  assume "x - y = 0"
+  hence e: "x + - y = 0" by (simp! add: diff_eq1)
   with _ _ _ have "x = - (- y)" 
     by (rule vs_add_minus_eq_minus) (simp!)+
   thus "x = y" by (simp!)
 qed
 
 lemma vs_add_diff_swap:
-  "[| is_vectorspace V; a:V; b:V; c:V; d:V; a + b = c + d |] 
+  "[| is_vectorspace V; a \<in> V; b \<in> V; c \<in> V; d \<in> V; a + b = c + d |] 
   ==> a - c = d - b"
 proof - 
-  assume vs: "is_vectorspace V" "a:V" "b:V" "c:V" "d:V" 
+  assume vs: "is_vectorspace V" "a \<in> V" "b \<in> V" "c \<in> V" "d \<in> V" 
     and eq: "a + b = c + d"
   have "- c + (a + b) = - c + (c + d)" 
     by (simp! add: vs_add_left_cancel)
@@ -487,16 +473,16 @@
     by (simp add: vs_add_ac diff_eq1)
   also from eq have "...  = d + - b" 
     by (simp! add: vs_add_right_cancel)
-  also have "... = d - b" by (simp! add : diff_eq2)
+  also have "... = d - b" by (simp! add: diff_eq2)
   finally show "a - c = d - b" .
 qed
 
 lemma vs_add_cancel_21: 
-  "[| is_vectorspace V; x:V; y:V; z:V; u:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V; u \<in> V |] 
   ==> (x + (y + z) = y + u) = ((x + z) = u)"
   (concl is "?L = ?R") 
 proof - 
-  assume "is_vectorspace V" "x:V" "y:V""z:V" "u:V"
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "z \<in> V" "u \<in> V"
   show "?L = ?R"
   proof
     have "x + z = - y + y + (x + z)" by (simp!)
@@ -510,20 +496,20 @@
 qed
 
 lemma vs_add_cancel_end: 
-  "[| is_vectorspace V;  x:V; y:V; z:V |] 
+  "[| is_vectorspace V; x \<in> V; y \<in> V; z \<in> V |] 
   ==> (x + (y + z) = y) = (x = - z)"
   (concl is "?L = ?R" )
 proof -
-  assume "is_vectorspace V" "x:V" "y:V" "z:V"
+  assume "is_vectorspace V" "x \<in> V" "y \<in> V" "z \<in> V"
   show "?L = ?R"
   proof
     assume l: ?L
-    have "x + z = 00" 
+    have "x + z = 0" 
     proof (rule vs_add_left_cancel [RS iffD1])
       have "y + (x + z) = x + (y + z)" by (simp!)
       also note l
-      also have "y = y + 00" by (simp!)
-      finally show "y + (x + z) = y + 00" .
+      also have "y = y + 0" by (simp!)
+      finally show "y + (x + z) = y + 0" .
     qed (simp!)+
     thus "x = - z" by (simp! add: vs_add_minus_eq_minus)
   next