--- a/src/HOL/BNF_Cardinal_Arithmetic.thy Tue Mar 18 10:12:58 2014 +0100
+++ b/src/HOL/BNF_Cardinal_Arithmetic.thy Tue Mar 18 11:47:59 2014 +0100
@@ -14,10 +14,6 @@
lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f"
by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
-(*should supersede a weaker lemma from the library*)
-lemma dir_image_Field: "Field (dir_image r f) = f ` Field r"
-unfolding dir_image_def Field_def Range_def Domain_def by fast
-
lemma card_order_dir_image:
assumes bij: "bij f" and co: "card_order r"
shows "card_order (dir_image r f)"
@@ -42,37 +38,6 @@
lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV"
using card_order_on_Card_order[of UNIV r] by simp
-lemma card_of_Times_Plus_distrib:
- "|A <*> (B <+> C)| =o |A <*> B <+> A <*> C|" (is "|?RHS| =o |?LHS|")
-proof -
- let ?f = "\<lambda>(a, bc). case bc of Inl b \<Rightarrow> Inl (a, b) | Inr c \<Rightarrow> Inr (a, c)"
- have "bij_betw ?f ?RHS ?LHS" unfolding bij_betw_def inj_on_def by force
- thus ?thesis using card_of_ordIso by blast
-qed
-
-lemma Func_Times_Range:
- "|Func A (B <*> C)| =o |Func A B <*> Func A C|" (is "|?LHS| =o |?RHS|")
-proof -
- let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined,
- \<lambda>x. if x \<in> A then snd (fg x) else undefined)"
- let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined"
- have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def
- proof (intro conjI impI ballI equalityI subsetI)
- fix f g assume *: "f \<in> Func A (B \<times> C)" "g \<in> Func A (B \<times> C)" "?F f = ?F g"
- show "f = g"
- proof
- fix x from * have "fst (f x) = fst (g x) \<and> snd (f x) = snd (g x)"
- by (case_tac "x \<in> A") (auto simp: Func_def fun_eq_iff split: if_splits)
- then show "f x = g x" by (subst (1 2) surjective_pairing) simp
- qed
- next
- fix fg assume "fg \<in> Func A B \<times> Func A C"
- thus "fg \<in> ?F ` Func A (B \<times> C)"
- by (intro image_eqI[of _ _ "?G fg"]) (auto simp: Func_def)
- qed (auto simp: Func_def fun_eq_iff)
- thus ?thesis using card_of_ordIso by blast
-qed
-
subsection {* Zero *}
@@ -364,7 +329,7 @@
lemma card_of_Csum_Times:
"\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|"
-by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_Times)
+by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_mono1)
lemma card_of_Csum_Times':
assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r"