src/HOL/PReal.thy
changeset 28952 15a4b2cf8c34
parent 28945 da79ac67794b
child 29197 6d4cb27ed19c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/PReal.thy	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,1343 @@
+(*  Title       : PReal.thy
+    Author      : Jacques D. Fleuriot
+    Copyright   : 1998  University of Cambridge
+    Description : The positive reals as Dedekind sections of positive
+         rationals. Fundamentals of Abstract Analysis [Gleason- p. 121]
+                  provides some of the definitions.
+*)
+
+header {* Positive real numbers *}
+
+theory PReal
+imports Rational "~~/src/HOL/Library/Dense_Linear_Order"
+begin
+
+text{*Could be generalized and moved to @{text Ring_and_Field}*}
+lemma add_eq_exists: "\<exists>x. a+x = (b::rat)"
+by (rule_tac x="b-a" in exI, simp)
+
+definition
+  cut :: "rat set => bool" where
+  [code del]: "cut A = ({} \<subset> A &
+            A < {r. 0 < r} &
+            (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))"
+
+lemma cut_of_rat: 
+  assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A")
+proof -
+  from q have pos: "?A < {r. 0 < r}" by force
+  have nonempty: "{} \<subset> ?A"
+  proof
+    show "{} \<subseteq> ?A" by simp
+    show "{} \<noteq> ?A"
+      by (force simp only: q eq_commute [of "{}"] interval_empty_iff)
+  qed
+  show ?thesis
+    by (simp add: cut_def pos nonempty,
+        blast dest: dense intro: order_less_trans)
+qed
+
+
+typedef preal = "{A. cut A}"
+  by (blast intro: cut_of_rat [OF zero_less_one])
+
+definition
+  preal_of_rat :: "rat => preal" where
+  "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}"
+
+definition
+  psup :: "preal set => preal" where
+  "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
+
+definition
+  add_set :: "[rat set,rat set] => rat set" where
+  "add_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x + y}"
+
+definition
+  diff_set :: "[rat set,rat set] => rat set" where
+  [code del]: "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
+
+definition
+  mult_set :: "[rat set,rat set] => rat set" where
+  "mult_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x * y}"
+
+definition
+  inverse_set :: "rat set => rat set" where
+  [code del]: "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
+
+instantiation preal :: "{ord, plus, minus, times, inverse, one}"
+begin
+
+definition
+  preal_less_def [code del]:
+    "R < S == Rep_preal R < Rep_preal S"
+
+definition
+  preal_le_def [code del]:
+    "R \<le> S == Rep_preal R \<subseteq> Rep_preal S"
+
+definition
+  preal_add_def:
+    "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))"
+
+definition
+  preal_diff_def:
+    "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))"
+
+definition
+  preal_mult_def:
+    "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))"
+
+definition
+  preal_inverse_def:
+    "inverse R == Abs_preal (inverse_set (Rep_preal R))"
+
+definition "R / S = R * inverse (S\<Colon>preal)"
+
+definition
+  preal_one_def:
+    "1 == preal_of_rat 1"
+
+instance ..
+
+end
+
+
+text{*Reduces equality on abstractions to equality on representatives*}
+declare Abs_preal_inject [simp]
+declare Abs_preal_inverse [simp]
+
+lemma rat_mem_preal: "0 < q ==> {r::rat. 0 < r & r < q} \<in> preal"
+by (simp add: preal_def cut_of_rat)
+
+lemma preal_nonempty: "A \<in> preal ==> \<exists>x\<in>A. 0 < x"
+by (unfold preal_def cut_def, blast)
+
+lemma preal_Ex_mem: "A \<in> preal \<Longrightarrow> \<exists>x. x \<in> A"
+by (drule preal_nonempty, fast)
+
+lemma preal_imp_psubset_positives: "A \<in> preal ==> A < {r. 0 < r}"
+by (force simp add: preal_def cut_def)
+
+lemma preal_exists_bound: "A \<in> preal ==> \<exists>x. 0 < x & x \<notin> A"
+by (drule preal_imp_psubset_positives, auto)
+
+lemma preal_exists_greater: "[| A \<in> preal; y \<in> A |] ==> \<exists>u \<in> A. y < u"
+by (unfold preal_def cut_def, blast)
+
+lemma preal_downwards_closed: "[| A \<in> preal; y \<in> A; 0 < z; z < y |] ==> z \<in> A"
+by (unfold preal_def cut_def, blast)
+
+text{*Relaxing the final premise*}
+lemma preal_downwards_closed':
+     "[| A \<in> preal; y \<in> A; 0 < z; z \<le> y |] ==> z \<in> A"
+apply (simp add: order_le_less)
+apply (blast intro: preal_downwards_closed)
+done
+
+text{*A positive fraction not in a positive real is an upper bound.
+ Gleason p. 122 - Remark (1)*}
+
+lemma not_in_preal_ub:
+  assumes A: "A \<in> preal"
+    and notx: "x \<notin> A"
+    and y: "y \<in> A"
+    and pos: "0 < x"
+  shows "y < x"
+proof (cases rule: linorder_cases)
+  assume "x<y"
+  with notx show ?thesis
+    by (simp add:  preal_downwards_closed [OF A y] pos)
+next
+  assume "x=y"
+  with notx and y show ?thesis by simp
+next
+  assume "y<x"
+  thus ?thesis .
+qed
+
+text {* preal lemmas instantiated to @{term "Rep_preal X"} *}
+
+lemma mem_Rep_preal_Ex: "\<exists>x. x \<in> Rep_preal X"
+by (rule preal_Ex_mem [OF Rep_preal])
+
+lemma Rep_preal_exists_bound: "\<exists>x>0. x \<notin> Rep_preal X"
+by (rule preal_exists_bound [OF Rep_preal])
+
+lemmas not_in_Rep_preal_ub = not_in_preal_ub [OF Rep_preal]
+
+
+
+subsection{*@{term preal_of_prat}: the Injection from prat to preal*}
+
+lemma rat_less_set_mem_preal: "0 < y ==> {u::rat. 0 < u & u < y} \<in> preal"
+by (simp add: preal_def cut_of_rat)
+
+lemma rat_subset_imp_le:
+     "[|{u::rat. 0 < u & u < x} \<subseteq> {u. 0 < u & u < y}; 0<x|] ==> x \<le> y"
+apply (simp add: linorder_not_less [symmetric])
+apply (blast dest: dense intro: order_less_trans)
+done
+
+lemma rat_set_eq_imp_eq:
+     "[|{u::rat. 0 < u & u < x} = {u. 0 < u & u < y};
+        0 < x; 0 < y|] ==> x = y"
+by (blast intro: rat_subset_imp_le order_antisym)
+
+
+
+subsection{*Properties of Ordering*}
+
+instance preal :: order
+proof
+  fix w :: preal
+  show "w \<le> w" by (simp add: preal_le_def)
+next
+  fix i j k :: preal
+  assume "i \<le> j" and "j \<le> k"
+  then show "i \<le> k" by (simp add: preal_le_def)
+next
+  fix z w :: preal
+  assume "z \<le> w" and "w \<le> z"
+  then show "z = w" by (simp add: preal_le_def Rep_preal_inject)
+next
+  fix z w :: preal
+  show "z < w \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
+  by (auto simp add: preal_le_def preal_less_def Rep_preal_inject)
+qed  
+
+lemma preal_imp_pos: "[|A \<in> preal; r \<in> A|] ==> 0 < r"
+by (insert preal_imp_psubset_positives, blast)
+
+instance preal :: linorder
+proof
+  fix x y :: preal
+  show "x <= y | y <= x"
+    apply (auto simp add: preal_le_def)
+    apply (rule ccontr)
+    apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal]
+             elim: order_less_asym)
+    done
+qed
+
+instantiation preal :: distrib_lattice
+begin
+
+definition
+  "(inf \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = min"
+
+definition
+  "(sup \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = max"
+
+instance
+  by intro_classes
+    (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1)
+
+end
+
+subsection{*Properties of Addition*}
+
+lemma preal_add_commute: "(x::preal) + y = y + x"
+apply (unfold preal_add_def add_set_def)
+apply (rule_tac f = Abs_preal in arg_cong)
+apply (force simp add: add_commute)
+done
+
+text{*Lemmas for proving that addition of two positive reals gives
+ a positive real*}
+
+lemma empty_psubset_nonempty: "a \<in> A ==> {} \<subset> A"
+by blast
+
+text{*Part 1 of Dedekind sections definition*}
+lemma add_set_not_empty:
+     "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> add_set A B"
+apply (drule preal_nonempty)+
+apply (auto simp add: add_set_def)
+done
+
+text{*Part 2 of Dedekind sections definition.  A structured version of
+this proof is @{text preal_not_mem_mult_set_Ex} below.*}
+lemma preal_not_mem_add_set_Ex:
+     "[|A \<in> preal; B \<in> preal|] ==> \<exists>q>0. q \<notin> add_set A B"
+apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto) 
+apply (rule_tac x = "x+xa" in exI)
+apply (simp add: add_set_def, clarify)
+apply (drule (3) not_in_preal_ub)+
+apply (force dest: add_strict_mono)
+done
+
+lemma add_set_not_rat_set:
+   assumes A: "A \<in> preal" 
+       and B: "B \<in> preal"
+     shows "add_set A B < {r. 0 < r}"
+proof
+  from preal_imp_pos [OF A] preal_imp_pos [OF B]
+  show "add_set A B \<subseteq> {r. 0 < r}" by (force simp add: add_set_def) 
+next
+  show "add_set A B \<noteq> {r. 0 < r}"
+    by (insert preal_not_mem_add_set_Ex [OF A B], blast) 
+qed
+
+text{*Part 3 of Dedekind sections definition*}
+lemma add_set_lemma3:
+     "[|A \<in> preal; B \<in> preal; u \<in> add_set A B; 0 < z; z < u|] 
+      ==> z \<in> add_set A B"
+proof (unfold add_set_def, clarify)
+  fix x::rat and y::rat
+  assume A: "A \<in> preal" 
+    and B: "B \<in> preal"
+    and [simp]: "0 < z"
+    and zless: "z < x + y"
+    and x:  "x \<in> A"
+    and y:  "y \<in> B"
+  have xpos [simp]: "0<x" by (rule preal_imp_pos [OF A x])
+  have ypos [simp]: "0<y" by (rule preal_imp_pos [OF B y])
+  have xypos [simp]: "0 < x+y" by (simp add: pos_add_strict)
+  let ?f = "z/(x+y)"
+  have fless: "?f < 1" by (simp add: zless pos_divide_less_eq)
+  show "\<exists>x' \<in> A. \<exists>y'\<in>B. z = x' + y'"
+  proof (intro bexI)
+    show "z = x*?f + y*?f"
+      by (simp add: left_distrib [symmetric] divide_inverse mult_ac
+          order_less_imp_not_eq2)
+  next
+    show "y * ?f \<in> B"
+    proof (rule preal_downwards_closed [OF B y])
+      show "0 < y * ?f"
+        by (simp add: divide_inverse zero_less_mult_iff)
+    next
+      show "y * ?f < y"
+        by (insert mult_strict_left_mono [OF fless ypos], simp)
+    qed
+  next
+    show "x * ?f \<in> A"
+    proof (rule preal_downwards_closed [OF A x])
+      show "0 < x * ?f"
+	by (simp add: divide_inverse zero_less_mult_iff)
+    next
+      show "x * ?f < x"
+	by (insert mult_strict_left_mono [OF fless xpos], simp)
+    qed
+  qed
+qed
+
+text{*Part 4 of Dedekind sections definition*}
+lemma add_set_lemma4:
+     "[|A \<in> preal; B \<in> preal; y \<in> add_set A B|] ==> \<exists>u \<in> add_set A B. y < u"
+apply (auto simp add: add_set_def)
+apply (frule preal_exists_greater [of A], auto) 
+apply (rule_tac x="u + y" in exI)
+apply (auto intro: add_strict_left_mono)
+done
+
+lemma mem_add_set:
+     "[|A \<in> preal; B \<in> preal|] ==> add_set A B \<in> preal"
+apply (simp (no_asm_simp) add: preal_def cut_def)
+apply (blast intro!: add_set_not_empty add_set_not_rat_set
+                     add_set_lemma3 add_set_lemma4)
+done
+
+lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)"
+apply (simp add: preal_add_def mem_add_set Rep_preal)
+apply (force simp add: add_set_def add_ac)
+done
+
+instance preal :: ab_semigroup_add
+proof
+  fix a b c :: preal
+  show "(a + b) + c = a + (b + c)" by (rule preal_add_assoc)
+  show "a + b = b + a" by (rule preal_add_commute)
+qed
+
+lemma preal_add_left_commute: "x + (y + z) = y + ((x + z)::preal)"
+by (rule add_left_commute)
+
+text{* Positive Real addition is an AC operator *}
+lemmas preal_add_ac = preal_add_assoc preal_add_commute preal_add_left_commute
+
+
+subsection{*Properties of Multiplication*}
+
+text{*Proofs essentially same as for addition*}
+
+lemma preal_mult_commute: "(x::preal) * y = y * x"
+apply (unfold preal_mult_def mult_set_def)
+apply (rule_tac f = Abs_preal in arg_cong)
+apply (force simp add: mult_commute)
+done
+
+text{*Multiplication of two positive reals gives a positive real.*}
+
+text{*Lemmas for proving positive reals multiplication set in @{typ preal}*}
+
+text{*Part 1 of Dedekind sections definition*}
+lemma mult_set_not_empty:
+     "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> mult_set A B"
+apply (insert preal_nonempty [of A] preal_nonempty [of B]) 
+apply (auto simp add: mult_set_def)
+done
+
+text{*Part 2 of Dedekind sections definition*}
+lemma preal_not_mem_mult_set_Ex:
+   assumes A: "A \<in> preal" 
+       and B: "B \<in> preal"
+     shows "\<exists>q. 0 < q & q \<notin> mult_set A B"
+proof -
+  from preal_exists_bound [OF A]
+  obtain x where [simp]: "0 < x" "x \<notin> A" by blast
+  from preal_exists_bound [OF B]
+  obtain y where [simp]: "0 < y" "y \<notin> B" by blast
+  show ?thesis
+  proof (intro exI conjI)
+    show "0 < x*y" by (simp add: mult_pos_pos)
+    show "x * y \<notin> mult_set A B"
+    proof -
+      { fix u::rat and v::rat
+	      assume "u \<in> A" and "v \<in> B" and "x*y = u*v"
+	      moreover
+	      with prems have "u<x" and "v<y" by (blast dest: not_in_preal_ub)+
+	      moreover
+	      with prems have "0\<le>v"
+	        by (blast intro: preal_imp_pos [OF B]  order_less_imp_le prems)
+	      moreover
+        from calculation
+	      have "u*v < x*y" by (blast intro: mult_strict_mono prems)
+	      ultimately have False by force }
+      thus ?thesis by (auto simp add: mult_set_def)
+    qed
+  qed
+qed
+
+lemma mult_set_not_rat_set:
+  assumes A: "A \<in> preal" 
+    and B: "B \<in> preal"
+  shows "mult_set A B < {r. 0 < r}"
+proof
+  show "mult_set A B \<subseteq> {r. 0 < r}"
+    by (force simp add: mult_set_def
+      intro: preal_imp_pos [OF A] preal_imp_pos [OF B] mult_pos_pos)
+  show "mult_set A B \<noteq> {r. 0 < r}"
+    using preal_not_mem_mult_set_Ex [OF A B] by blast
+qed
+
+
+
+text{*Part 3 of Dedekind sections definition*}
+lemma mult_set_lemma3:
+     "[|A \<in> preal; B \<in> preal; u \<in> mult_set A B; 0 < z; z < u|] 
+      ==> z \<in> mult_set A B"
+proof (unfold mult_set_def, clarify)
+  fix x::rat and y::rat
+  assume A: "A \<in> preal" 
+    and B: "B \<in> preal"
+    and [simp]: "0 < z"
+    and zless: "z < x * y"
+    and x:  "x \<in> A"
+    and y:  "y \<in> B"
+  have [simp]: "0<y" by (rule preal_imp_pos [OF B y])
+  show "\<exists>x' \<in> A. \<exists>y' \<in> B. z = x' * y'"
+  proof
+    show "\<exists>y'\<in>B. z = (z/y) * y'"
+    proof
+      show "z = (z/y)*y"
+	by (simp add: divide_inverse mult_commute [of y] mult_assoc
+		      order_less_imp_not_eq2)
+      show "y \<in> B" by fact
+    qed
+  next
+    show "z/y \<in> A"
+    proof (rule preal_downwards_closed [OF A x])
+      show "0 < z/y"
+	by (simp add: zero_less_divide_iff)
+      show "z/y < x" by (simp add: pos_divide_less_eq zless)
+    qed
+  qed
+qed
+
+text{*Part 4 of Dedekind sections definition*}
+lemma mult_set_lemma4:
+     "[|A \<in> preal; B \<in> preal; y \<in> mult_set A B|] ==> \<exists>u \<in> mult_set A B. y < u"
+apply (auto simp add: mult_set_def)
+apply (frule preal_exists_greater [of A], auto) 
+apply (rule_tac x="u * y" in exI)
+apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B] 
+                   mult_strict_right_mono)
+done
+
+
+lemma mem_mult_set:
+     "[|A \<in> preal; B \<in> preal|] ==> mult_set A B \<in> preal"
+apply (simp (no_asm_simp) add: preal_def cut_def)
+apply (blast intro!: mult_set_not_empty mult_set_not_rat_set
+                     mult_set_lemma3 mult_set_lemma4)
+done
+
+lemma preal_mult_assoc: "((x::preal) * y) * z = x * (y * z)"
+apply (simp add: preal_mult_def mem_mult_set Rep_preal)
+apply (force simp add: mult_set_def mult_ac)
+done
+
+instance preal :: ab_semigroup_mult
+proof
+  fix a b c :: preal
+  show "(a * b) * c = a * (b * c)" by (rule preal_mult_assoc)
+  show "a * b = b * a" by (rule preal_mult_commute)
+qed
+
+lemma preal_mult_left_commute: "x * (y * z) = y * ((x * z)::preal)"
+by (rule mult_left_commute)
+
+
+text{* Positive Real multiplication is an AC operator *}
+lemmas preal_mult_ac =
+       preal_mult_assoc preal_mult_commute preal_mult_left_commute
+
+
+text{* Positive real 1 is the multiplicative identity element *}
+
+lemma preal_mult_1: "(1::preal) * z = z"
+unfolding preal_one_def
+proof (induct z)
+  fix A :: "rat set"
+  assume A: "A \<in> preal"
+  have "{w. \<exists>u. 0 < u \<and> u < 1 & (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
+  proof
+    show "?lhs \<subseteq> A"
+    proof clarify
+      fix x::rat and u::rat and v::rat
+      assume upos: "0<u" and "u<1" and v: "v \<in> A"
+      have vpos: "0<v" by (rule preal_imp_pos [OF A v])
+      hence "u*v < 1*v" by (simp only: mult_strict_right_mono prems)
+      thus "u * v \<in> A"
+        by (force intro: preal_downwards_closed [OF A v] mult_pos_pos 
+          upos vpos)
+    qed
+  next
+    show "A \<subseteq> ?lhs"
+    proof clarify
+      fix x::rat
+      assume x: "x \<in> A"
+      have xpos: "0<x" by (rule preal_imp_pos [OF A x])
+      from preal_exists_greater [OF A x]
+      obtain v where v: "v \<in> A" and xlessv: "x < v" ..
+      have vpos: "0<v" by (rule preal_imp_pos [OF A v])
+      show "\<exists>u. 0 < u \<and> u < 1 \<and> (\<exists>v\<in>A. x = u * v)"
+      proof (intro exI conjI)
+        show "0 < x/v"
+          by (simp add: zero_less_divide_iff xpos vpos)
+	show "x / v < 1"
+          by (simp add: pos_divide_less_eq vpos xlessv)
+        show "\<exists>v'\<in>A. x = (x / v) * v'"
+        proof
+          show "x = (x/v)*v"
+	    by (simp add: divide_inverse mult_assoc vpos
+                          order_less_imp_not_eq2)
+          show "v \<in> A" by fact
+        qed
+      qed
+    qed
+  qed
+  thus "preal_of_rat 1 * Abs_preal A = Abs_preal A"
+    by (simp add: preal_of_rat_def preal_mult_def mult_set_def 
+                  rat_mem_preal A)
+qed
+
+instance preal :: comm_monoid_mult
+by intro_classes (rule preal_mult_1)
+
+lemma preal_mult_1_right: "z * (1::preal) = z"
+by (rule mult_1_right)
+
+
+subsection{*Distribution of Multiplication across Addition*}
+
+lemma mem_Rep_preal_add_iff:
+      "(z \<in> Rep_preal(R+S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x + y)"
+apply (simp add: preal_add_def mem_add_set Rep_preal)
+apply (simp add: add_set_def) 
+done
+
+lemma mem_Rep_preal_mult_iff:
+      "(z \<in> Rep_preal(R*S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x * y)"
+apply (simp add: preal_mult_def mem_mult_set Rep_preal)
+apply (simp add: mult_set_def) 
+done
+
+lemma distrib_subset1:
+     "Rep_preal (w * (x + y)) \<subseteq> Rep_preal (w * x + w * y)"
+apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff)
+apply (force simp add: right_distrib)
+done
+
+lemma preal_add_mult_distrib_mean:
+  assumes a: "a \<in> Rep_preal w"
+    and b: "b \<in> Rep_preal w"
+    and d: "d \<in> Rep_preal x"
+    and e: "e \<in> Rep_preal y"
+  shows "\<exists>c \<in> Rep_preal w. a * d + b * e = c * (d + e)"
+proof
+  let ?c = "(a*d + b*e)/(d+e)"
+  have [simp]: "0<a" "0<b" "0<d" "0<e" "0<d+e"
+    by (blast intro: preal_imp_pos [OF Rep_preal] a b d e pos_add_strict)+
+  have cpos: "0 < ?c"
+    by (simp add: zero_less_divide_iff zero_less_mult_iff pos_add_strict)
+  show "a * d + b * e = ?c * (d + e)"
+    by (simp add: divide_inverse mult_assoc order_less_imp_not_eq2)
+  show "?c \<in> Rep_preal w"
+  proof (cases rule: linorder_le_cases)
+    assume "a \<le> b"
+    hence "?c \<le> b"
+      by (simp add: pos_divide_le_eq right_distrib mult_right_mono
+                    order_less_imp_le)
+    thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal b cpos])
+  next
+    assume "b \<le> a"
+    hence "?c \<le> a"
+      by (simp add: pos_divide_le_eq right_distrib mult_right_mono
+                    order_less_imp_le)
+    thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal a cpos])
+  qed
+qed
+
+lemma distrib_subset2:
+     "Rep_preal (w * x + w * y) \<subseteq> Rep_preal (w * (x + y))"
+apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff)
+apply (drule_tac w=w and x=x and y=y in preal_add_mult_distrib_mean, auto)
+done
+
+lemma preal_add_mult_distrib2: "(w * ((x::preal) + y)) = (w * x) + (w * y)"
+apply (rule Rep_preal_inject [THEN iffD1])
+apply (rule equalityI [OF distrib_subset1 distrib_subset2])
+done
+
+lemma preal_add_mult_distrib: "(((x::preal) + y) * w) = (x * w) + (y * w)"
+by (simp add: preal_mult_commute preal_add_mult_distrib2)
+
+instance preal :: comm_semiring
+by intro_classes (rule preal_add_mult_distrib)
+
+
+subsection{*Existence of Inverse, a Positive Real*}
+
+lemma mem_inv_set_ex:
+  assumes A: "A \<in> preal" shows "\<exists>x y. 0 < x & x < y & inverse y \<notin> A"
+proof -
+  from preal_exists_bound [OF A]
+  obtain x where [simp]: "0<x" "x \<notin> A" by blast
+  show ?thesis
+  proof (intro exI conjI)
+    show "0 < inverse (x+1)"
+      by (simp add: order_less_trans [OF _ less_add_one]) 
+    show "inverse(x+1) < inverse x"
+      by (simp add: less_imp_inverse_less less_add_one)
+    show "inverse (inverse x) \<notin> A"
+      by (simp add: order_less_imp_not_eq2)
+  qed
+qed
+
+text{*Part 1 of Dedekind sections definition*}
+lemma inverse_set_not_empty:
+     "A \<in> preal ==> {} \<subset> inverse_set A"
+apply (insert mem_inv_set_ex [of A])
+apply (auto simp add: inverse_set_def)
+done
+
+text{*Part 2 of Dedekind sections definition*}
+
+lemma preal_not_mem_inverse_set_Ex:
+   assumes A: "A \<in> preal"  shows "\<exists>q. 0 < q & q \<notin> inverse_set A"
+proof -
+  from preal_nonempty [OF A]
+  obtain x where x: "x \<in> A" and  xpos [simp]: "0<x" ..
+  show ?thesis
+  proof (intro exI conjI)
+    show "0 < inverse x" by simp
+    show "inverse x \<notin> inverse_set A"
+    proof -
+      { fix y::rat 
+	assume ygt: "inverse x < y"
+	have [simp]: "0 < y" by (simp add: order_less_trans [OF _ ygt])
+	have iyless: "inverse y < x" 
+	  by (simp add: inverse_less_imp_less [of x] ygt)
+	have "inverse y \<in> A"
+	  by (simp add: preal_downwards_closed [OF A x] iyless)}
+     thus ?thesis by (auto simp add: inverse_set_def)
+    qed
+  qed
+qed
+
+lemma inverse_set_not_rat_set:
+   assumes A: "A \<in> preal"  shows "inverse_set A < {r. 0 < r}"
+proof
+  show "inverse_set A \<subseteq> {r. 0 < r}"  by (force simp add: inverse_set_def)
+next
+  show "inverse_set A \<noteq> {r. 0 < r}"
+    by (insert preal_not_mem_inverse_set_Ex [OF A], blast)
+qed
+
+text{*Part 3 of Dedekind sections definition*}
+lemma inverse_set_lemma3:
+     "[|A \<in> preal; u \<in> inverse_set A; 0 < z; z < u|] 
+      ==> z \<in> inverse_set A"
+apply (auto simp add: inverse_set_def)
+apply (auto intro: order_less_trans)
+done
+
+text{*Part 4 of Dedekind sections definition*}
+lemma inverse_set_lemma4:
+     "[|A \<in> preal; y \<in> inverse_set A|] ==> \<exists>u \<in> inverse_set A. y < u"
+apply (auto simp add: inverse_set_def)
+apply (drule dense [of y]) 
+apply (blast intro: order_less_trans)
+done
+
+
+lemma mem_inverse_set:
+     "A \<in> preal ==> inverse_set A \<in> preal"
+apply (simp (no_asm_simp) add: preal_def cut_def)
+apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set
+                     inverse_set_lemma3 inverse_set_lemma4)
+done
+
+
+subsection{*Gleason's Lemma 9-3.4, page 122*}
+
+lemma Gleason9_34_exists:
+  assumes A: "A \<in> preal"
+    and "\<forall>x\<in>A. x + u \<in> A"
+    and "0 \<le> z"
+  shows "\<exists>b\<in>A. b + (of_int z) * u \<in> A"
+proof (cases z rule: int_cases)
+  case (nonneg n)
+  show ?thesis
+  proof (simp add: prems, induct n)
+    case 0
+      from preal_nonempty [OF A]
+      show ?case  by force 
+    case (Suc k)
+      from this obtain b where "b \<in> A" "b + of_nat k * u \<in> A" ..
+      hence "b + of_int (int k)*u + u \<in> A" by (simp add: prems)
+      thus ?case by (force simp add: left_distrib add_ac prems) 
+  qed
+next
+  case (neg n)
+  with prems show ?thesis by simp
+qed
+
+lemma Gleason9_34_contra:
+  assumes A: "A \<in> preal"
+    shows "[|\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A|] ==> False"
+proof (induct u, induct y)
+  fix a::int and b::int
+  fix c::int and d::int
+  assume bpos [simp]: "0 < b"
+    and dpos [simp]: "0 < d"
+    and closed: "\<forall>x\<in>A. x + (Fract c d) \<in> A"
+    and upos: "0 < Fract c d"
+    and ypos: "0 < Fract a b"
+    and notin: "Fract a b \<notin> A"
+  have cpos [simp]: "0 < c" 
+    by (simp add: zero_less_Fract_iff [OF dpos, symmetric] upos) 
+  have apos [simp]: "0 < a" 
+    by (simp add: zero_less_Fract_iff [OF bpos, symmetric] ypos) 
+  let ?k = "a*d"
+  have frle: "Fract a b \<le> Fract ?k 1 * (Fract c d)" 
+  proof -
+    have "?thesis = ((a * d * b * d) \<le> c * b * (a * d * b * d))"
+      by (simp add: mult_rat le_rat order_less_imp_not_eq2 mult_ac) 
+    moreover
+    have "(1 * (a * d * b * d)) \<le> c * b * (a * d * b * d)"
+      by (rule mult_mono, 
+          simp_all add: int_one_le_iff_zero_less zero_less_mult_iff 
+                        order_less_imp_le)
+    ultimately
+    show ?thesis by simp
+  qed
+  have k: "0 \<le> ?k" by (simp add: order_less_imp_le zero_less_mult_iff)  
+  from Gleason9_34_exists [OF A closed k]
+  obtain z where z: "z \<in> A" 
+             and mem: "z + of_int ?k * Fract c d \<in> A" ..
+  have less: "z + of_int ?k * Fract c d < Fract a b"
+    by (rule not_in_preal_ub [OF A notin mem ypos])
+  have "0<z" by (rule preal_imp_pos [OF A z])
+  with frle and less show False by (simp add: Fract_of_int_eq) 
+qed
+
+
+lemma Gleason9_34:
+  assumes A: "A \<in> preal"
+    and upos: "0 < u"
+  shows "\<exists>r \<in> A. r + u \<notin> A"
+proof (rule ccontr, simp)
+  assume closed: "\<forall>r\<in>A. r + u \<in> A"
+  from preal_exists_bound [OF A]
+  obtain y where y: "y \<notin> A" and ypos: "0 < y" by blast
+  show False
+    by (rule Gleason9_34_contra [OF A closed upos ypos y])
+qed
+
+
+
+subsection{*Gleason's Lemma 9-3.6*}
+
+lemma lemma_gleason9_36:
+  assumes A: "A \<in> preal"
+    and x: "1 < x"
+  shows "\<exists>r \<in> A. r*x \<notin> A"
+proof -
+  from preal_nonempty [OF A]
+  obtain y where y: "y \<in> A" and  ypos: "0<y" ..
+  show ?thesis 
+  proof (rule classical)
+    assume "~(\<exists>r\<in>A. r * x \<notin> A)"
+    with y have ymem: "y * x \<in> A" by blast 
+    from ypos mult_strict_left_mono [OF x]
+    have yless: "y < y*x" by simp 
+    let ?d = "y*x - y"
+    from yless have dpos: "0 < ?d" and eq: "y + ?d = y*x" by auto
+    from Gleason9_34 [OF A dpos]
+    obtain r where r: "r\<in>A" and notin: "r + ?d \<notin> A" ..
+    have rpos: "0<r" by (rule preal_imp_pos [OF A r])
+    with dpos have rdpos: "0 < r + ?d" by arith
+    have "~ (r + ?d \<le> y + ?d)"
+    proof
+      assume le: "r + ?d \<le> y + ?d" 
+      from ymem have yd: "y + ?d \<in> A" by (simp add: eq)
+      have "r + ?d \<in> A" by (rule preal_downwards_closed' [OF A yd rdpos le])
+      with notin show False by simp
+    qed
+    hence "y < r" by simp
+    with ypos have  dless: "?d < (r * ?d)/y"
+      by (simp add: pos_less_divide_eq mult_commute [of ?d]
+                    mult_strict_right_mono dpos)
+    have "r + ?d < r*x"
+    proof -
+      have "r + ?d < r + (r * ?d)/y" by (simp add: dless)
+      also with ypos have "... = (r/y) * (y + ?d)"
+	by (simp only: right_distrib divide_inverse mult_ac, simp)
+      also have "... = r*x" using ypos
+	by (simp add: times_divide_eq_left) 
+      finally show "r + ?d < r*x" .
+    qed
+    with r notin rdpos
+    show "\<exists>r\<in>A. r * x \<notin> A" by (blast dest:  preal_downwards_closed [OF A])
+  qed  
+qed
+
+subsection{*Existence of Inverse: Part 2*}
+
+lemma mem_Rep_preal_inverse_iff:
+      "(z \<in> Rep_preal(inverse R)) = 
+       (0 < z \<and> (\<exists>y. z < y \<and> inverse y \<notin> Rep_preal R))"
+apply (simp add: preal_inverse_def mem_inverse_set Rep_preal)
+apply (simp add: inverse_set_def) 
+done
+
+lemma Rep_preal_of_rat:
+     "0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x \<and> x < q}"
+by (simp add: preal_of_rat_def rat_mem_preal) 
+
+lemma subset_inverse_mult_lemma:
+  assumes xpos: "0 < x" and xless: "x < 1"
+  shows "\<exists>r u y. 0 < r & r < y & inverse y \<notin> Rep_preal R & 
+    u \<in> Rep_preal R & x = r * u"
+proof -
+  from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff)
+  from lemma_gleason9_36 [OF Rep_preal this]
+  obtain r where r: "r \<in> Rep_preal R" 
+             and notin: "r * (inverse x) \<notin> Rep_preal R" ..
+  have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r])
+  from preal_exists_greater [OF Rep_preal r]
+  obtain u where u: "u \<in> Rep_preal R" and rless: "r < u" ..
+  have upos: "0<u" by (rule preal_imp_pos [OF Rep_preal u])
+  show ?thesis
+  proof (intro exI conjI)
+    show "0 < x/u" using xpos upos
+      by (simp add: zero_less_divide_iff)  
+    show "x/u < x/r" using xpos upos rpos
+      by (simp add: divide_inverse mult_less_cancel_left rless) 
+    show "inverse (x / r) \<notin> Rep_preal R" using notin
+      by (simp add: divide_inverse mult_commute) 
+    show "u \<in> Rep_preal R" by (rule u) 
+    show "x = x / u * u" using upos 
+      by (simp add: divide_inverse mult_commute) 
+  qed
+qed
+
+lemma subset_inverse_mult: 
+     "Rep_preal(preal_of_rat 1) \<subseteq> Rep_preal(inverse R * R)"
+apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff 
+                      mem_Rep_preal_mult_iff)
+apply (blast dest: subset_inverse_mult_lemma) 
+done
+
+lemma inverse_mult_subset_lemma:
+  assumes rpos: "0 < r" 
+    and rless: "r < y"
+    and notin: "inverse y \<notin> Rep_preal R"
+    and q: "q \<in> Rep_preal R"
+  shows "r*q < 1"
+proof -
+  have "q < inverse y" using rpos rless
+    by (simp add: not_in_preal_ub [OF Rep_preal notin] q)
+  hence "r * q < r/y" using rpos
+    by (simp add: divide_inverse mult_less_cancel_left)
+  also have "... \<le> 1" using rpos rless
+    by (simp add: pos_divide_le_eq)
+  finally show ?thesis .
+qed
+
+lemma inverse_mult_subset:
+     "Rep_preal(inverse R * R) \<subseteq> Rep_preal(preal_of_rat 1)"
+apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff 
+                      mem_Rep_preal_mult_iff)
+apply (simp add: zero_less_mult_iff preal_imp_pos [OF Rep_preal]) 
+apply (blast intro: inverse_mult_subset_lemma) 
+done
+
+lemma preal_mult_inverse: "inverse R * R = (1::preal)"
+unfolding preal_one_def
+apply (rule Rep_preal_inject [THEN iffD1])
+apply (rule equalityI [OF inverse_mult_subset subset_inverse_mult]) 
+done
+
+lemma preal_mult_inverse_right: "R * inverse R = (1::preal)"
+apply (rule preal_mult_commute [THEN subst])
+apply (rule preal_mult_inverse)
+done
+
+
+text{*Theorems needing @{text Gleason9_34}*}
+
+lemma Rep_preal_self_subset: "Rep_preal (R) \<subseteq> Rep_preal(R + S)"
+proof 
+  fix r
+  assume r: "r \<in> Rep_preal R"
+  have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r])
+  from mem_Rep_preal_Ex 
+  obtain y where y: "y \<in> Rep_preal S" ..
+  have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y])
+  have ry: "r+y \<in> Rep_preal(R + S)" using r y
+    by (auto simp add: mem_Rep_preal_add_iff)
+  show "r \<in> Rep_preal(R + S)" using r ypos rpos 
+    by (simp add:  preal_downwards_closed [OF Rep_preal ry]) 
+qed
+
+lemma Rep_preal_sum_not_subset: "~ Rep_preal (R + S) \<subseteq> Rep_preal(R)"
+proof -
+  from mem_Rep_preal_Ex 
+  obtain y where y: "y \<in> Rep_preal S" ..
+  have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y])
+  from  Gleason9_34 [OF Rep_preal ypos]
+  obtain r where r: "r \<in> Rep_preal R" and notin: "r + y \<notin> Rep_preal R" ..
+  have "r + y \<in> Rep_preal (R + S)" using r y
+    by (auto simp add: mem_Rep_preal_add_iff)
+  thus ?thesis using notin by blast
+qed
+
+lemma Rep_preal_sum_not_eq: "Rep_preal (R + S) \<noteq> Rep_preal(R)"
+by (insert Rep_preal_sum_not_subset, blast)
+
+text{*at last, Gleason prop. 9-3.5(iii) page 123*}
+lemma preal_self_less_add_left: "(R::preal) < R + S"
+apply (unfold preal_less_def less_le)
+apply (simp add: Rep_preal_self_subset Rep_preal_sum_not_eq [THEN not_sym])
+done
+
+lemma preal_self_less_add_right: "(R::preal) < S + R"
+by (simp add: preal_add_commute preal_self_less_add_left)
+
+lemma preal_not_eq_self: "x \<noteq> x + (y::preal)"
+by (insert preal_self_less_add_left [of x y], auto)
+
+
+subsection{*Subtraction for Positive Reals*}
+
+text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> \<exists>D. A + D =
+B"}. We define the claimed @{term D} and show that it is a positive real*}
+
+text{*Part 1 of Dedekind sections definition*}
+lemma diff_set_not_empty:
+     "R < S ==> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
+apply (auto simp add: preal_less_def diff_set_def elim!: equalityE) 
+apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater])
+apply (drule preal_imp_pos [OF Rep_preal], clarify)
+apply (cut_tac a=x and b=u in add_eq_exists, force) 
+done
+
+text{*Part 2 of Dedekind sections definition*}
+lemma diff_set_nonempty:
+     "\<exists>q. 0 < q & q \<notin> diff_set (Rep_preal S) (Rep_preal R)"
+apply (cut_tac X = S in Rep_preal_exists_bound)
+apply (erule exE)
+apply (rule_tac x = x in exI, auto)
+apply (simp add: diff_set_def) 
+apply (auto dest: Rep_preal [THEN preal_downwards_closed])
+done
+
+lemma diff_set_not_rat_set:
+  "diff_set (Rep_preal S) (Rep_preal R) < {r. 0 < r}" (is "?lhs < ?rhs")
+proof
+  show "?lhs \<subseteq> ?rhs" by (auto simp add: diff_set_def) 
+  show "?lhs \<noteq> ?rhs" using diff_set_nonempty by blast
+qed
+
+text{*Part 3 of Dedekind sections definition*}
+lemma diff_set_lemma3:
+     "[|R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|] 
+      ==> z \<in> diff_set (Rep_preal S) (Rep_preal R)"
+apply (auto simp add: diff_set_def) 
+apply (rule_tac x=x in exI) 
+apply (drule Rep_preal [THEN preal_downwards_closed], auto)
+done
+
+text{*Part 4 of Dedekind sections definition*}
+lemma diff_set_lemma4:
+     "[|R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)|] 
+      ==> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u"
+apply (auto simp add: diff_set_def) 
+apply (drule Rep_preal [THEN preal_exists_greater], clarify) 
+apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify)  
+apply (rule_tac x="y+xa" in exI) 
+apply (auto simp add: add_ac)
+done
+
+lemma mem_diff_set:
+     "R < S ==> diff_set (Rep_preal S) (Rep_preal R) \<in> preal"
+apply (unfold preal_def cut_def)
+apply (blast intro!: diff_set_not_empty diff_set_not_rat_set
+                     diff_set_lemma3 diff_set_lemma4)
+done
+
+lemma mem_Rep_preal_diff_iff:
+      "R < S ==>
+       (z \<in> Rep_preal(S-R)) = 
+       (\<exists>x. 0 < x & 0 < z & x \<notin> Rep_preal R & x + z \<in> Rep_preal S)"
+apply (simp add: preal_diff_def mem_diff_set Rep_preal)
+apply (force simp add: diff_set_def) 
+done
+
+
+text{*proving that @{term "R + D \<le> S"}*}
+
+lemma less_add_left_lemma:
+  assumes Rless: "R < S"
+    and a: "a \<in> Rep_preal R"
+    and cb: "c + b \<in> Rep_preal S"
+    and "c \<notin> Rep_preal R"
+    and "0 < b"
+    and "0 < c"
+  shows "a + b \<in> Rep_preal S"
+proof -
+  have "0<a" by (rule preal_imp_pos [OF Rep_preal a])
+  moreover
+  have "a < c" using prems
+    by (blast intro: not_in_Rep_preal_ub ) 
+  ultimately show ?thesis using prems
+    by (simp add: preal_downwards_closed [OF Rep_preal cb]) 
+qed
+
+lemma less_add_left_le1:
+       "R < (S::preal) ==> R + (S-R) \<le> S"
+apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff 
+                      mem_Rep_preal_diff_iff)
+apply (blast intro: less_add_left_lemma) 
+done
+
+subsection{*proving that @{term "S \<le> R + D"} --- trickier*}
+
+lemma lemma_sum_mem_Rep_preal_ex:
+     "x \<in> Rep_preal S ==> \<exists>e. 0 < e & x + e \<in> Rep_preal S"
+apply (drule Rep_preal [THEN preal_exists_greater], clarify) 
+apply (cut_tac a=x and b=u in add_eq_exists, auto) 
+done
+
+lemma less_add_left_lemma2:
+  assumes Rless: "R < S"
+    and x:     "x \<in> Rep_preal S"
+    and xnot: "x \<notin>  Rep_preal R"
+  shows "\<exists>u v z. 0 < v & 0 < z & u \<in> Rep_preal R & z \<notin> Rep_preal R & 
+                     z + v \<in> Rep_preal S & x = u + v"
+proof -
+  have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x])
+  from lemma_sum_mem_Rep_preal_ex [OF x]
+  obtain e where epos: "0 < e" and xe: "x + e \<in> Rep_preal S" by blast
+  from  Gleason9_34 [OF Rep_preal epos]
+  obtain r where r: "r \<in> Rep_preal R" and notin: "r + e \<notin> Rep_preal R" ..
+  with x xnot xpos have rless: "r < x" by (blast intro: not_in_Rep_preal_ub)
+  from add_eq_exists [of r x]
+  obtain y where eq: "x = r+y" by auto
+  show ?thesis 
+  proof (intro exI conjI)
+    show "r \<in> Rep_preal R" by (rule r)
+    show "r + e \<notin> Rep_preal R" by (rule notin)
+    show "r + e + y \<in> Rep_preal S" using xe eq by (simp add: add_ac)
+    show "x = r + y" by (simp add: eq)
+    show "0 < r + e" using epos preal_imp_pos [OF Rep_preal r]
+      by simp
+    show "0 < y" using rless eq by arith
+  qed
+qed
+
+lemma less_add_left_le2: "R < (S::preal) ==> S \<le> R + (S-R)"
+apply (auto simp add: preal_le_def)
+apply (case_tac "x \<in> Rep_preal R")
+apply (cut_tac Rep_preal_self_subset [of R], force)
+apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff)
+apply (blast dest: less_add_left_lemma2)
+done
+
+lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S"
+by (blast intro: antisym [OF less_add_left_le1 less_add_left_le2])
+
+lemma less_add_left_Ex: "R < (S::preal) ==> \<exists>D. R + D = S"
+by (fast dest: less_add_left)
+
+lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T"
+apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc)
+apply (rule_tac y1 = D in preal_add_commute [THEN subst])
+apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric])
+done
+
+lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S"
+by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T])
+
+lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)"
+apply (insert linorder_less_linear [of R S], auto)
+apply (drule_tac R = S and T = T in preal_add_less2_mono1)
+apply (blast dest: order_less_trans) 
+done
+
+lemma preal_add_left_less_cancel: "T + R < T + S ==> R <  (S::preal)"
+by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T])
+
+lemma preal_add_less_cancel_right: "((R::preal) + T < S + T) = (R < S)"
+by (blast intro: preal_add_less2_mono1 preal_add_right_less_cancel)
+
+lemma preal_add_less_cancel_left: "(T + (R::preal) < T + S) = (R < S)"
+by (blast intro: preal_add_less2_mono2 preal_add_left_less_cancel)
+
+lemma preal_add_le_cancel_right: "((R::preal) + T \<le> S + T) = (R \<le> S)"
+by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_right) 
+
+lemma preal_add_le_cancel_left: "(T + (R::preal) \<le> T + S) = (R \<le> S)"
+by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_left) 
+
+lemma preal_add_less_mono:
+     "[| x1 < y1; x2 < y2 |] ==> x1 + x2 < y1 + (y2::preal)"
+apply (auto dest!: less_add_left_Ex simp add: preal_add_ac)
+apply (rule preal_add_assoc [THEN subst])
+apply (rule preal_self_less_add_right)
+done
+
+lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S"
+apply (insert linorder_less_linear [of R S], safe)
+apply (drule_tac [!] T = T in preal_add_less2_mono1, auto)
+done
+
+lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)"
+by (auto intro: preal_add_right_cancel simp add: preal_add_commute)
+
+lemma preal_add_left_cancel_iff: "(C + A = C + B) = ((A::preal) = B)"
+by (fast intro: preal_add_left_cancel)
+
+lemma preal_add_right_cancel_iff: "(A + C = B + C) = ((A::preal) = B)"
+by (fast intro: preal_add_right_cancel)
+
+lemmas preal_cancels =
+    preal_add_less_cancel_right preal_add_less_cancel_left
+    preal_add_le_cancel_right preal_add_le_cancel_left
+    preal_add_left_cancel_iff preal_add_right_cancel_iff
+
+instance preal :: ordered_cancel_ab_semigroup_add
+proof
+  fix a b c :: preal
+  show "a + b = a + c \<Longrightarrow> b = c" by (rule preal_add_left_cancel)
+  show "a \<le> b \<Longrightarrow> c + a \<le> c + b" by (simp only: preal_add_le_cancel_left)
+qed
+
+
+subsection{*Completeness of type @{typ preal}*}
+
+text{*Prove that supremum is a cut*}
+
+text{*Part 1 of Dedekind sections definition*}
+
+lemma preal_sup_set_not_empty:
+     "P \<noteq> {} ==> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
+apply auto
+apply (cut_tac X = x in mem_Rep_preal_Ex, auto)
+done
+
+
+text{*Part 2 of Dedekind sections definition*}
+
+lemma preal_sup_not_exists:
+     "\<forall>X \<in> P. X \<le> Y ==> \<exists>q. 0 < q & q \<notin> (\<Union>X \<in> P. Rep_preal(X))"
+apply (cut_tac X = Y in Rep_preal_exists_bound)
+apply (auto simp add: preal_le_def)
+done
+
+lemma preal_sup_set_not_rat_set:
+     "\<forall>X \<in> P. X \<le> Y ==> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
+apply (drule preal_sup_not_exists)
+apply (blast intro: preal_imp_pos [OF Rep_preal])  
+done
+
+text{*Part 3 of Dedekind sections definition*}
+lemma preal_sup_set_lemma3:
+     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u|]
+      ==> z \<in> (\<Union>X \<in> P. Rep_preal(X))"
+by (auto elim: Rep_preal [THEN preal_downwards_closed])
+
+text{*Part 4 of Dedekind sections definition*}
+lemma preal_sup_set_lemma4:
+     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X)) |]
+          ==> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u"
+by (blast dest: Rep_preal [THEN preal_exists_greater])
+
+lemma preal_sup:
+     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y|] ==> (\<Union>X \<in> P. Rep_preal(X)) \<in> preal"
+apply (unfold preal_def cut_def)
+apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set
+                     preal_sup_set_lemma3 preal_sup_set_lemma4)
+done
+
+lemma preal_psup_le:
+     "[| \<forall>X \<in> P. X \<le> Y;  x \<in> P |] ==> x \<le> psup P"
+apply (simp (no_asm_simp) add: preal_le_def) 
+apply (subgoal_tac "P \<noteq> {}") 
+apply (auto simp add: psup_def preal_sup) 
+done
+
+lemma psup_le_ub: "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> psup P \<le> Y"
+apply (simp (no_asm_simp) add: preal_le_def)
+apply (simp add: psup_def preal_sup) 
+apply (auto simp add: preal_le_def)
+done
+
+text{*Supremum property*}
+lemma preal_complete:
+     "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
+apply (simp add: preal_less_def psup_def preal_sup)
+apply (auto simp add: preal_le_def)
+apply (rename_tac U) 
+apply (cut_tac x = U and y = Z in linorder_less_linear)
+apply (auto simp add: preal_less_def)
+done
+
+
+subsection{*The Embedding from @{typ rat} into @{typ preal}*}
+
+lemma preal_of_rat_add_lemma1:
+     "[|x < y + z; 0 < x; 0 < y|] ==> x * y * inverse (y + z) < (y::rat)"
+apply (frule_tac c = "y * inverse (y + z) " in mult_strict_right_mono)
+apply (simp add: zero_less_mult_iff) 
+apply (simp add: mult_ac)
+done
+
+lemma preal_of_rat_add_lemma2:
+  assumes "u < x + y"
+    and "0 < x"
+    and "0 < y"
+    and "0 < u"
+  shows "\<exists>v w::rat. w < y & 0 < v & v < x & 0 < w & u = v + w"
+proof (intro exI conjI)
+  show "u * x * inverse(x+y) < x" using prems 
+    by (simp add: preal_of_rat_add_lemma1) 
+  show "u * y * inverse(x+y) < y" using prems 
+    by (simp add: preal_of_rat_add_lemma1 add_commute [of x]) 
+  show "0 < u * x * inverse (x + y)" using prems
+    by (simp add: zero_less_mult_iff) 
+  show "0 < u * y * inverse (x + y)" using prems
+    by (simp add: zero_less_mult_iff) 
+  show "u = u * x * inverse (x + y) + u * y * inverse (x + y)" using prems
+    by (simp add: left_distrib [symmetric] right_distrib [symmetric] mult_ac)
+qed
+
+lemma preal_of_rat_add:
+     "[| 0 < x; 0 < y|] 
+      ==> preal_of_rat ((x::rat) + y) = preal_of_rat x + preal_of_rat y"
+apply (unfold preal_of_rat_def preal_add_def)
+apply (simp add: rat_mem_preal) 
+apply (rule_tac f = Abs_preal in arg_cong)
+apply (auto simp add: add_set_def) 
+apply (blast dest: preal_of_rat_add_lemma2) 
+done
+
+lemma preal_of_rat_mult_lemma1:
+     "[|x < y; 0 < x; 0 < z|] ==> x * z * inverse y < (z::rat)"
+apply (frule_tac c = "z * inverse y" in mult_strict_right_mono)
+apply (simp add: zero_less_mult_iff)
+apply (subgoal_tac "y * (z * inverse y) = z * (y * inverse y)")
+apply (simp_all add: mult_ac)
+done
+
+lemma preal_of_rat_mult_lemma2: 
+  assumes xless: "x < y * z"
+    and xpos: "0 < x"
+    and ypos: "0 < y"
+  shows "x * z * inverse y * inverse z < (z::rat)"
+proof -
+  have "0 < y * z" using prems by simp
+  hence zpos:  "0 < z" using prems by (simp add: zero_less_mult_iff)
+  have "x * z * inverse y * inverse z = x * inverse y * (z * inverse z)"
+    by (simp add: mult_ac)
+  also have "... = x/y" using zpos
+    by (simp add: divide_inverse)
+  also from xless have "... < z"
+    by (simp add: pos_divide_less_eq [OF ypos] mult_commute)
+  finally show ?thesis .
+qed
+
+lemma preal_of_rat_mult_lemma3:
+  assumes uless: "u < x * y"
+    and "0 < x"
+    and "0 < y"
+    and "0 < u"
+  shows "\<exists>v w::rat. v < x & w < y & 0 < v & 0 < w & u = v * w"
+proof -
+  from dense [OF uless] 
+  obtain r where "u < r" "r < x * y" by blast
+  thus ?thesis
+  proof (intro exI conjI)
+  show "u * x * inverse r < x" using prems 
+    by (simp add: preal_of_rat_mult_lemma1) 
+  show "r * y * inverse x * inverse y < y" using prems
+    by (simp add: preal_of_rat_mult_lemma2)
+  show "0 < u * x * inverse r" using prems
+    by (simp add: zero_less_mult_iff) 
+  show "0 < r * y * inverse x * inverse y" using prems
+    by (simp add: zero_less_mult_iff) 
+  have "u * x * inverse r * (r * y * inverse x * inverse y) =
+        u * (r * inverse r) * (x * inverse x) * (y * inverse y)"
+    by (simp only: mult_ac)
+  thus "u = u * x * inverse r * (r * y * inverse x * inverse y)" using prems
+    by simp
+  qed
+qed
+
+lemma preal_of_rat_mult:
+     "[| 0 < x; 0 < y|] 
+      ==> preal_of_rat ((x::rat) * y) = preal_of_rat x * preal_of_rat y"
+apply (unfold preal_of_rat_def preal_mult_def)
+apply (simp add: rat_mem_preal) 
+apply (rule_tac f = Abs_preal in arg_cong)
+apply (auto simp add: zero_less_mult_iff mult_strict_mono mult_set_def) 
+apply (blast dest: preal_of_rat_mult_lemma3) 
+done
+
+lemma preal_of_rat_less_iff:
+      "[| 0 < x; 0 < y|] ==> (preal_of_rat x < preal_of_rat y) = (x < y)"
+by (force simp add: preal_of_rat_def preal_less_def rat_mem_preal) 
+
+lemma preal_of_rat_le_iff:
+      "[| 0 < x; 0 < y|] ==> (preal_of_rat x \<le> preal_of_rat y) = (x \<le> y)"
+by (simp add: preal_of_rat_less_iff linorder_not_less [symmetric]) 
+
+lemma preal_of_rat_eq_iff:
+      "[| 0 < x; 0 < y|] ==> (preal_of_rat x = preal_of_rat y) = (x = y)"
+by (simp add: preal_of_rat_le_iff order_eq_iff) 
+
+end