src/HOL/RComplete.thy
changeset 28952 15a4b2cf8c34
parent 28562 4e74209f113e
child 29667 53103fc8ffa3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/RComplete.thy	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,1333 @@
+(*  Title       : HOL/RComplete.thy
+    Author      : Jacques D. Fleuriot, University of Edinburgh
+    Author      : Larry Paulson, University of Cambridge
+    Author      : Jeremy Avigad, Carnegie Mellon University
+    Author      : Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
+*)
+
+header {* Completeness of the Reals; Floor and Ceiling Functions *}
+
+theory RComplete
+imports Lubs RealDef
+begin
+
+lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
+  by simp
+
+
+subsection {* Completeness of Positive Reals *}
+
+text {*
+  Supremum property for the set of positive reals
+
+  Let @{text "P"} be a non-empty set of positive reals, with an upper
+  bound @{text "y"}.  Then @{text "P"} has a least upper bound
+  (written @{text "S"}).
+
+  FIXME: Can the premise be weakened to @{text "\<forall>x \<in> P. x\<le> y"}?
+*}
+
+lemma posreal_complete:
+  assumes positive_P: "\<forall>x \<in> P. (0::real) < x"
+    and not_empty_P: "\<exists>x. x \<in> P"
+    and upper_bound_Ex: "\<exists>y. \<forall>x \<in> P. x<y"
+  shows "\<exists>S. \<forall>y. (\<exists>x \<in> P. y < x) = (y < S)"
+proof (rule exI, rule allI)
+  fix y
+  let ?pP = "{w. real_of_preal w \<in> P}"
+
+  show "(\<exists>x\<in>P. y < x) = (y < real_of_preal (psup ?pP))"
+  proof (cases "0 < y")
+    assume neg_y: "\<not> 0 < y"
+    show ?thesis
+    proof
+      assume "\<exists>x\<in>P. y < x"
+      have "\<forall>x. y < real_of_preal x"
+        using neg_y by (rule real_less_all_real2)
+      thus "y < real_of_preal (psup ?pP)" ..
+    next
+      assume "y < real_of_preal (psup ?pP)"
+      obtain "x" where x_in_P: "x \<in> P" using not_empty_P ..
+      hence "0 < x" using positive_P by simp
+      hence "y < x" using neg_y by simp
+      thus "\<exists>x \<in> P. y < x" using x_in_P ..
+    qed
+  next
+    assume pos_y: "0 < y"
+
+    then obtain py where y_is_py: "y = real_of_preal py"
+      by (auto simp add: real_gt_zero_preal_Ex)
+
+    obtain a where "a \<in> P" using not_empty_P ..
+    with positive_P have a_pos: "0 < a" ..
+    then obtain pa where "a = real_of_preal pa"
+      by (auto simp add: real_gt_zero_preal_Ex)
+    hence "pa \<in> ?pP" using `a \<in> P` by auto
+    hence pP_not_empty: "?pP \<noteq> {}" by auto
+
+    obtain sup where sup: "\<forall>x \<in> P. x < sup"
+      using upper_bound_Ex ..
+    from this and `a \<in> P` have "a < sup" ..
+    hence "0 < sup" using a_pos by arith
+    then obtain possup where "sup = real_of_preal possup"
+      by (auto simp add: real_gt_zero_preal_Ex)
+    hence "\<forall>X \<in> ?pP. X \<le> possup"
+      using sup by (auto simp add: real_of_preal_lessI)
+    with pP_not_empty have psup: "\<And>Z. (\<exists>X \<in> ?pP. Z < X) = (Z < psup ?pP)"
+      by (rule preal_complete)
+
+    show ?thesis
+    proof
+      assume "\<exists>x \<in> P. y < x"
+      then obtain x where x_in_P: "x \<in> P" and y_less_x: "y < x" ..
+      hence "0 < x" using pos_y by arith
+      then obtain px where x_is_px: "x = real_of_preal px"
+        by (auto simp add: real_gt_zero_preal_Ex)
+
+      have py_less_X: "\<exists>X \<in> ?pP. py < X"
+      proof
+        show "py < px" using y_is_py and x_is_px and y_less_x
+          by (simp add: real_of_preal_lessI)
+        show "px \<in> ?pP" using x_in_P and x_is_px by simp
+      qed
+
+      have "(\<exists>X \<in> ?pP. py < X) ==> (py < psup ?pP)"
+        using psup by simp
+      hence "py < psup ?pP" using py_less_X by simp
+      thus "y < real_of_preal (psup {w. real_of_preal w \<in> P})"
+        using y_is_py and pos_y by (simp add: real_of_preal_lessI)
+    next
+      assume y_less_psup: "y < real_of_preal (psup ?pP)"
+
+      hence "py < psup ?pP" using y_is_py
+        by (simp add: real_of_preal_lessI)
+      then obtain "X" where py_less_X: "py < X" and X_in_pP: "X \<in> ?pP"
+        using psup by auto
+      then obtain x where x_is_X: "x = real_of_preal X"
+        by (simp add: real_gt_zero_preal_Ex)
+      hence "y < x" using py_less_X and y_is_py
+        by (simp add: real_of_preal_lessI)
+
+      moreover have "x \<in> P" using x_is_X and X_in_pP by simp
+
+      ultimately show "\<exists> x \<in> P. y < x" ..
+    qed
+  qed
+qed
+
+text {*
+  \medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc.
+*}
+
+lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)"
+  apply (frule isLub_isUb)
+  apply (frule_tac x = y in isLub_isUb)
+  apply (blast intro!: order_antisym dest!: isLub_le_isUb)
+  done
+
+
+text {*
+  \medskip Completeness theorem for the positive reals (again).
+*}
+
+lemma posreals_complete:
+  assumes positive_S: "\<forall>x \<in> S. 0 < x"
+    and not_empty_S: "\<exists>x. x \<in> S"
+    and upper_bound_Ex: "\<exists>u. isUb (UNIV::real set) S u"
+  shows "\<exists>t. isLub (UNIV::real set) S t"
+proof
+  let ?pS = "{w. real_of_preal w \<in> S}"
+
+  obtain u where "isUb UNIV S u" using upper_bound_Ex ..
+  hence sup: "\<forall>x \<in> S. x \<le> u" by (simp add: isUb_def setle_def)
+
+  obtain x where x_in_S: "x \<in> S" using not_empty_S ..
+  hence x_gt_zero: "0 < x" using positive_S by simp
+  have  "x \<le> u" using sup and x_in_S ..
+  hence "0 < u" using x_gt_zero by arith
+
+  then obtain pu where u_is_pu: "u = real_of_preal pu"
+    by (auto simp add: real_gt_zero_preal_Ex)
+
+  have pS_less_pu: "\<forall>pa \<in> ?pS. pa \<le> pu"
+  proof
+    fix pa
+    assume "pa \<in> ?pS"
+    then obtain a where "a \<in> S" and "a = real_of_preal pa"
+      by simp
+    moreover hence "a \<le> u" using sup by simp
+    ultimately show "pa \<le> pu"
+      using sup and u_is_pu by (simp add: real_of_preal_le_iff)
+  qed
+
+  have "\<forall>y \<in> S. y \<le> real_of_preal (psup ?pS)"
+  proof
+    fix y
+    assume y_in_S: "y \<in> S"
+    hence "0 < y" using positive_S by simp
+    then obtain py where y_is_py: "y = real_of_preal py"
+      by (auto simp add: real_gt_zero_preal_Ex)
+    hence py_in_pS: "py \<in> ?pS" using y_in_S by simp
+    with pS_less_pu have "py \<le> psup ?pS"
+      by (rule preal_psup_le)
+    thus "y \<le> real_of_preal (psup ?pS)"
+      using y_is_py by (simp add: real_of_preal_le_iff)
+  qed
+
+  moreover {
+    fix x
+    assume x_ub_S: "\<forall>y\<in>S. y \<le> x"
+    have "real_of_preal (psup ?pS) \<le> x"
+    proof -
+      obtain "s" where s_in_S: "s \<in> S" using not_empty_S ..
+      hence s_pos: "0 < s" using positive_S by simp
+
+      hence "\<exists> ps. s = real_of_preal ps" by (simp add: real_gt_zero_preal_Ex)
+      then obtain "ps" where s_is_ps: "s = real_of_preal ps" ..
+      hence ps_in_pS: "ps \<in> {w. real_of_preal w \<in> S}" using s_in_S by simp
+
+      from x_ub_S have "s \<le> x" using s_in_S ..
+      hence "0 < x" using s_pos by simp
+      hence "\<exists> px. x = real_of_preal px" by (simp add: real_gt_zero_preal_Ex)
+      then obtain "px" where x_is_px: "x = real_of_preal px" ..
+
+      have "\<forall>pe \<in> ?pS. pe \<le> px"
+      proof
+	fix pe
+	assume "pe \<in> ?pS"
+	hence "real_of_preal pe \<in> S" by simp
+	hence "real_of_preal pe \<le> x" using x_ub_S by simp
+	thus "pe \<le> px" using x_is_px by (simp add: real_of_preal_le_iff)
+      qed
+
+      moreover have "?pS \<noteq> {}" using ps_in_pS by auto
+      ultimately have "(psup ?pS) \<le> px" by (simp add: psup_le_ub)
+      thus "real_of_preal (psup ?pS) \<le> x" using x_is_px by (simp add: real_of_preal_le_iff)
+    qed
+  }
+  ultimately show "isLub UNIV S (real_of_preal (psup ?pS))"
+    by (simp add: isLub_def leastP_def isUb_def setle_def setge_def)
+qed
+
+text {*
+  \medskip reals Completeness (again!)
+*}
+
+lemma reals_complete:
+  assumes notempty_S: "\<exists>X. X \<in> S"
+    and exists_Ub: "\<exists>Y. isUb (UNIV::real set) S Y"
+  shows "\<exists>t. isLub (UNIV :: real set) S t"
+proof -
+  obtain X where X_in_S: "X \<in> S" using notempty_S ..
+  obtain Y where Y_isUb: "isUb (UNIV::real set) S Y"
+    using exists_Ub ..
+  let ?SHIFT = "{z. \<exists>x \<in>S. z = x + (-X) + 1} \<inter> {x. 0 < x}"
+
+  {
+    fix x
+    assume "isUb (UNIV::real set) S x"
+    hence S_le_x: "\<forall> y \<in> S. y <= x"
+      by (simp add: isUb_def setle_def)
+    {
+      fix s
+      assume "s \<in> {z. \<exists>x\<in>S. z = x + - X + 1}"
+      hence "\<exists> x \<in> S. s = x + -X + 1" ..
+      then obtain x1 where "x1 \<in> S" and "s = x1 + (-X) + 1" ..
+      moreover hence "x1 \<le> x" using S_le_x by simp
+      ultimately have "s \<le> x + - X + 1" by arith
+    }
+    then have "isUb (UNIV::real set) ?SHIFT (x + (-X) + 1)"
+      by (auto simp add: isUb_def setle_def)
+  } note S_Ub_is_SHIFT_Ub = this
+
+  hence "isUb UNIV ?SHIFT (Y + (-X) + 1)" using Y_isUb by simp
+  hence "\<exists>Z. isUb UNIV ?SHIFT Z" ..
+  moreover have "\<forall>y \<in> ?SHIFT. 0 < y" by auto
+  moreover have shifted_not_empty: "\<exists>u. u \<in> ?SHIFT"
+    using X_in_S and Y_isUb by auto
+  ultimately obtain t where t_is_Lub: "isLub UNIV ?SHIFT t"
+    using posreals_complete [of ?SHIFT] by blast
+
+  show ?thesis
+  proof
+    show "isLub UNIV S (t + X + (-1))"
+    proof (rule isLubI2)
+      {
+        fix x
+        assume "isUb (UNIV::real set) S x"
+        hence "isUb (UNIV::real set) (?SHIFT) (x + (-X) + 1)"
+	  using S_Ub_is_SHIFT_Ub by simp
+        hence "t \<le> (x + (-X) + 1)"
+	  using t_is_Lub by (simp add: isLub_le_isUb)
+        hence "t + X + -1 \<le> x" by arith
+      }
+      then show "(t + X + -1) <=* Collect (isUb UNIV S)"
+	by (simp add: setgeI)
+    next
+      show "isUb UNIV S (t + X + -1)"
+      proof -
+        {
+          fix y
+          assume y_in_S: "y \<in> S"
+          have "y \<le> t + X + -1"
+          proof -
+            obtain "u" where u_in_shift: "u \<in> ?SHIFT" using shifted_not_empty ..
+            hence "\<exists> x \<in> S. u = x + - X + 1" by simp
+            then obtain "x" where x_and_u: "u = x + - X + 1" ..
+            have u_le_t: "u \<le> t" using u_in_shift and t_is_Lub by (simp add: isLubD2)
+
+            show ?thesis
+            proof cases
+              assume "y \<le> x"
+              moreover have "x = u + X + - 1" using x_and_u by arith
+              moreover have "u + X + - 1  \<le> t + X + -1" using u_le_t by arith
+              ultimately show "y  \<le> t + X + -1" by arith
+            next
+              assume "~(y \<le> x)"
+              hence x_less_y: "x < y" by arith
+
+              have "x + (-X) + 1 \<in> ?SHIFT" using x_and_u and u_in_shift by simp
+              hence "0 < x + (-X) + 1" by simp
+              hence "0 < y + (-X) + 1" using x_less_y by arith
+              hence "y + (-X) + 1 \<in> ?SHIFT" using y_in_S by simp
+              hence "y + (-X) + 1 \<le> t" using t_is_Lub  by (simp add: isLubD2)
+              thus ?thesis by simp
+            qed
+          qed
+        }
+        then show ?thesis by (simp add: isUb_def setle_def)
+      qed
+    qed
+  qed
+qed
+
+
+subsection {* The Archimedean Property of the Reals *}
+
+theorem reals_Archimedean:
+  assumes x_pos: "0 < x"
+  shows "\<exists>n. inverse (real (Suc n)) < x"
+proof (rule ccontr)
+  assume contr: "\<not> ?thesis"
+  have "\<forall>n. x * real (Suc n) <= 1"
+  proof
+    fix n
+    from contr have "x \<le> inverse (real (Suc n))"
+      by (simp add: linorder_not_less)
+    hence "x \<le> (1 / (real (Suc n)))"
+      by (simp add: inverse_eq_divide)
+    moreover have "0 \<le> real (Suc n)"
+      by (rule real_of_nat_ge_zero)
+    ultimately have "x * real (Suc n) \<le> (1 / real (Suc n)) * real (Suc n)"
+      by (rule mult_right_mono)
+    thus "x * real (Suc n) \<le> 1" by simp
+  qed
+  hence "{z. \<exists>n. z = x * (real (Suc n))} *<= 1"
+    by (simp add: setle_def, safe, rule spec)
+  hence "isUb (UNIV::real set) {z. \<exists>n. z = x * (real (Suc n))} 1"
+    by (simp add: isUbI)
+  hence "\<exists>Y. isUb (UNIV::real set) {z. \<exists>n. z = x* (real (Suc n))} Y" ..
+  moreover have "\<exists>X. X \<in> {z. \<exists>n. z = x* (real (Suc n))}" by auto
+  ultimately have "\<exists>t. isLub UNIV {z. \<exists>n. z = x * real (Suc n)} t"
+    by (simp add: reals_complete)
+  then obtain "t" where
+    t_is_Lub: "isLub UNIV {z. \<exists>n. z = x * real (Suc n)} t" ..
+
+  have "\<forall>n::nat. x * real n \<le> t + - x"
+  proof
+    fix n
+    from t_is_Lub have "x * real (Suc n) \<le> t"
+      by (simp add: isLubD2)
+    hence  "x * (real n) + x \<le> t"
+      by (simp add: right_distrib real_of_nat_Suc)
+    thus  "x * (real n) \<le> t + - x" by arith
+  qed
+
+  hence "\<forall>m. x * real (Suc m) \<le> t + - x" by simp
+  hence "{z. \<exists>n. z = x * (real (Suc n))}  *<= (t + - x)"
+    by (auto simp add: setle_def)
+  hence "isUb (UNIV::real set) {z. \<exists>n. z = x * (real (Suc n))} (t + (-x))"
+    by (simp add: isUbI)
+  hence "t \<le> t + - x"
+    using t_is_Lub by (simp add: isLub_le_isUb)
+  thus False using x_pos by arith
+qed
+
+text {*
+  There must be other proofs, e.g. @{text "Suc"} of the largest
+  integer in the cut representing @{text "x"}.
+*}
+
+lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)"
+proof cases
+  assume "x \<le> 0"
+  hence "x < real (1::nat)" by simp
+  thus ?thesis ..
+next
+  assume "\<not> x \<le> 0"
+  hence x_greater_zero: "0 < x" by simp
+  hence "0 < inverse x" by simp
+  then obtain n where "inverse (real (Suc n)) < inverse x"
+    using reals_Archimedean by blast
+  hence "inverse (real (Suc n)) * x < inverse x * x"
+    using x_greater_zero by (rule mult_strict_right_mono)
+  hence "inverse (real (Suc n)) * x < 1"
+    using x_greater_zero by simp
+  hence "real (Suc n) * (inverse (real (Suc n)) * x) < real (Suc n) * 1"
+    by (rule mult_strict_left_mono) simp
+  hence "x < real (Suc n)"
+    by (simp add: ring_simps)
+  thus "\<exists>(n::nat). x < real n" ..
+qed
+
+lemma reals_Archimedean3:
+  assumes x_greater_zero: "0 < x"
+  shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x"
+proof
+  fix y
+  have x_not_zero: "x \<noteq> 0" using x_greater_zero by simp
+  obtain n where "y * inverse x < real (n::nat)"
+    using reals_Archimedean2 ..
+  hence "y * inverse x * x < real n * x"
+    using x_greater_zero by (simp add: mult_strict_right_mono)
+  hence "x * inverse x * y < x * real n"
+    by (simp add: ring_simps)
+  hence "y < real (n::nat) * x"
+    using x_not_zero by (simp add: ring_simps)
+  thus "\<exists>(n::nat). y < real n * x" ..
+qed
+
+lemma reals_Archimedean6:
+     "0 \<le> r ==> \<exists>(n::nat). real (n - 1) \<le> r & r < real (n)"
+apply (insert reals_Archimedean2 [of r], safe)
+apply (subgoal_tac "\<exists>x::nat. r < real x \<and> (\<forall>y. r < real y \<longrightarrow> x \<le> y)", auto)
+apply (rule_tac x = x in exI)
+apply (case_tac x, simp)
+apply (rename_tac x')
+apply (drule_tac x = x' in spec, simp)
+apply (rule_tac x="LEAST n. r < real n" in exI, safe)
+apply (erule LeastI, erule Least_le)
+done
+
+lemma reals_Archimedean6a: "0 \<le> r ==> \<exists>n. real (n) \<le> r & r < real (Suc n)"
+  by (drule reals_Archimedean6) auto
+
+lemma reals_Archimedean_6b_int:
+     "0 \<le> r ==> \<exists>n::int. real n \<le> r & r < real (n+1)"
+apply (drule reals_Archimedean6a, auto)
+apply (rule_tac x = "int n" in exI)
+apply (simp add: real_of_int_real_of_nat real_of_nat_Suc)
+done
+
+lemma reals_Archimedean_6c_int:
+     "r < 0 ==> \<exists>n::int. real n \<le> r & r < real (n+1)"
+apply (rule reals_Archimedean_6b_int [of "-r", THEN exE], simp, auto)
+apply (rename_tac n)
+apply (drule order_le_imp_less_or_eq, auto)
+apply (rule_tac x = "- n - 1" in exI)
+apply (rule_tac [2] x = "- n" in exI, auto)
+done
+
+
+subsection{*Density of the Rational Reals in the Reals*}
+
+text{* This density proof is due to Stefan Richter and was ported by TN.  The
+original source is \emph{Real Analysis} by H.L. Royden.
+It employs the Archimedean property of the reals. *}
+
+lemma Rats_dense_in_nn_real: fixes x::real
+assumes "0\<le>x" and "x<y" shows "\<exists>r \<in> \<rat>.  x<r \<and> r<y"
+proof -
+  from `x<y` have "0 < y-x" by simp
+  with reals_Archimedean obtain q::nat 
+    where q: "inverse (real q) < y-x" and "0 < real q" by auto  
+  def p \<equiv> "LEAST n.  y \<le> real (Suc n)/real q"  
+  from reals_Archimedean2 obtain n::nat where "y * real q < real n" by auto
+  with `0 < real q` have ex: "y \<le> real n/real q" (is "?P n")
+    by (simp add: pos_less_divide_eq[THEN sym])
+  also from assms have "\<not> y \<le> real (0::nat) / real q" by simp
+  ultimately have main: "(LEAST n. y \<le> real n/real q) = Suc p"
+    by (unfold p_def) (rule Least_Suc)
+  also from ex have "?P (LEAST x. ?P x)" by (rule LeastI)
+  ultimately have suc: "y \<le> real (Suc p) / real q" by simp
+  def r \<equiv> "real p/real q"
+  have "x = y-(y-x)" by simp
+  also from suc q have "\<dots> < real (Suc p)/real q - inverse (real q)" by arith
+  also have "\<dots> = real p / real q"
+    by (simp only: inverse_eq_divide real_diff_def real_of_nat_Suc 
+    minus_divide_left add_divide_distrib[THEN sym]) simp
+  finally have "x<r" by (unfold r_def)
+  have "p<Suc p" .. also note main[THEN sym]
+  finally have "\<not> ?P p"  by (rule not_less_Least)
+  hence "r<y" by (simp add: r_def)
+  from r_def have "r \<in> \<rat>" by simp
+  with `x<r` `r<y` show ?thesis by fast
+qed
+
+theorem Rats_dense_in_real: fixes x y :: real
+assumes "x<y" shows "\<exists>r \<in> \<rat>.  x<r \<and> r<y"
+proof -
+  from reals_Archimedean2 obtain n::nat where "-x < real n" by auto
+  hence "0 \<le> x + real n" by arith
+  also from `x<y` have "x + real n < y + real n" by arith
+  ultimately have "\<exists>r \<in> \<rat>. x + real n < r \<and> r < y + real n"
+    by(rule Rats_dense_in_nn_real)
+  then obtain r where "r \<in> \<rat>" and r2: "x + real n < r" 
+    and r3: "r < y + real n"
+    by blast
+  have "r - real n = r + real (int n)/real (-1::int)" by simp
+  also from `r\<in>\<rat>` have "r + real (int n)/real (-1::int) \<in> \<rat>" by simp
+  also from r2 have "x < r - real n" by arith
+  moreover from r3 have "r - real n < y" by arith
+  ultimately show ?thesis by fast
+qed
+
+
+subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
+
+definition
+  floor :: "real => int" where
+  [code del]: "floor r = (LEAST n::int. r < real (n+1))"
+
+definition
+  ceiling :: "real => int" where
+  "ceiling r = - floor (- r)"
+
+notation (xsymbols)
+  floor  ("\<lfloor>_\<rfloor>") and
+  ceiling  ("\<lceil>_\<rceil>")
+
+notation (HTML output)
+  floor  ("\<lfloor>_\<rfloor>") and
+  ceiling  ("\<lceil>_\<rceil>")
+
+
+lemma number_of_less_real_of_int_iff [simp]:
+     "((number_of n) < real (m::int)) = (number_of n < m)"
+apply auto
+apply (rule real_of_int_less_iff [THEN iffD1])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
+done
+
+lemma number_of_less_real_of_int_iff2 [simp]:
+     "(real (m::int) < (number_of n)) = (m < number_of n)"
+apply auto
+apply (rule real_of_int_less_iff [THEN iffD1])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
+done
+
+lemma number_of_le_real_of_int_iff [simp]:
+     "((number_of n) \<le> real (m::int)) = (number_of n \<le> m)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma number_of_le_real_of_int_iff2 [simp]:
+     "(real (m::int) \<le> (number_of n)) = (m \<le> number_of n)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma floor_zero [simp]: "floor 0 = 0"
+apply (simp add: floor_def del: real_of_int_add)
+apply (rule Least_equality)
+apply simp_all
+done
+
+lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0"
+by auto
+
+lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
+apply (simp only: floor_def)
+apply (rule Least_equality)
+apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD1])
+apply simp_all
+done
+
+lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
+apply (simp only: floor_def)
+apply (rule Least_equality)
+apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
+apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD1])
+apply simp_all
+done
+
+lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
+apply (simp only: floor_def)
+apply (rule Least_equality)
+apply auto
+done
+
+lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
+apply (simp only: floor_def)
+apply (rule Least_equality)
+apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst])
+apply auto
+done
+
+lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
+apply (case_tac "r < 0")
+apply (blast intro: reals_Archimedean_6c_int)
+apply (simp only: linorder_not_less)
+apply (blast intro: reals_Archimedean_6b_int reals_Archimedean_6c_int)
+done
+
+lemma lemma_floor:
+  assumes a1: "real m \<le> r" and a2: "r < real n + 1"
+  shows "m \<le> (n::int)"
+proof -
+  have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
+  also have "... = real (n + 1)" by simp
+  finally have "m < n + 1" by (simp only: real_of_int_less_iff)
+  thus ?thesis by arith
+qed
+
+lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r"
+apply (simp add: floor_def Least_def)
+apply (insert real_lb_ub_int [of r], safe)
+apply (rule theI2)
+apply auto
+done
+
+lemma floor_mono: "x < y ==> floor x \<le> floor y"
+apply (simp add: floor_def Least_def)
+apply (insert real_lb_ub_int [of x])
+apply (insert real_lb_ub_int [of y], safe)
+apply (rule theI2)
+apply (rule_tac [3] theI2)
+apply simp
+apply (erule conjI)
+apply (auto simp add: order_eq_iff int_le_real_less)
+done
+
+lemma floor_mono2: "x \<le> y ==> floor x \<le> floor y"
+by (auto dest: order_le_imp_less_or_eq simp add: floor_mono)
+
+lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x"
+by (auto intro: lemma_floor)
+
+lemma real_of_int_floor_cancel [simp]:
+    "(real (floor x) = x) = (\<exists>n::int. x = real n)"
+apply (simp add: floor_def Least_def)
+apply (insert real_lb_ub_int [of x], erule exE)
+apply (rule theI2)
+apply (auto intro: lemma_floor)
+done
+
+lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
+apply (simp add: floor_def)
+apply (rule Least_equality)
+apply (auto intro: lemma_floor)
+done
+
+lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n"
+apply (simp add: floor_def)
+apply (rule Least_equality)
+apply (auto intro: lemma_floor)
+done
+
+lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
+apply (rule inj_int [THEN injD])
+apply (simp add: real_of_nat_Suc)
+apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
+done
+
+lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n"
+apply (drule order_le_imp_less_or_eq)
+apply (auto intro: floor_eq3)
+done
+
+lemma floor_number_of_eq [simp]:
+     "floor(number_of n :: real) = (number_of n :: int)"
+apply (subst real_number_of [symmetric])
+apply (rule floor_real_of_int)
+done
+
+lemma floor_one [simp]: "floor 1 = 1"
+  apply (rule trans)
+  prefer 2
+  apply (rule floor_real_of_int)
+  apply simp
+done
+
+lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)"
+apply (simp add: floor_def Least_def)
+apply (insert real_lb_ub_int [of r], safe)
+apply (rule theI2)
+apply (auto intro: lemma_floor)
+done
+
+lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
+apply (simp add: floor_def Least_def)
+apply (insert real_lb_ub_int [of r], safe)
+apply (rule theI2)
+apply (auto intro: lemma_floor)
+done
+
+lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1"
+apply (insert real_of_int_floor_ge_diff_one [of r])
+apply (auto simp del: real_of_int_floor_ge_diff_one)
+done
+
+lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
+apply (insert real_of_int_floor_gt_diff_one [of r])
+apply (auto simp del: real_of_int_floor_gt_diff_one)
+done
+
+lemma le_floor: "real a <= x ==> a <= floor x"
+  apply (subgoal_tac "a < floor x + 1")
+  apply arith
+  apply (subst real_of_int_less_iff [THEN sym])
+  apply simp
+  apply (insert real_of_int_floor_add_one_gt [of x])
+  apply arith
+done
+
+lemma real_le_floor: "a <= floor x ==> real a <= x"
+  apply (rule order_trans)
+  prefer 2
+  apply (rule real_of_int_floor_le)
+  apply (subst real_of_int_le_iff)
+  apply assumption
+done
+
+lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
+  apply (rule iffI)
+  apply (erule real_le_floor)
+  apply (erule le_floor)
+done
+
+lemma le_floor_eq_number_of [simp]:
+    "(number_of n <= floor x) = (number_of n <= x)"
+by (simp add: le_floor_eq)
+
+lemma le_floor_eq_zero [simp]: "(0 <= floor x) = (0 <= x)"
+by (simp add: le_floor_eq)
+
+lemma le_floor_eq_one [simp]: "(1 <= floor x) = (1 <= x)"
+by (simp add: le_floor_eq)
+
+lemma floor_less_eq: "(floor x < a) = (x < real a)"
+  apply (subst linorder_not_le [THEN sym])+
+  apply simp
+  apply (rule le_floor_eq)
+done
+
+lemma floor_less_eq_number_of [simp]:
+    "(floor x < number_of n) = (x < number_of n)"
+by (simp add: floor_less_eq)
+
+lemma floor_less_eq_zero [simp]: "(floor x < 0) = (x < 0)"
+by (simp add: floor_less_eq)
+
+lemma floor_less_eq_one [simp]: "(floor x < 1) = (x < 1)"
+by (simp add: floor_less_eq)
+
+lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
+  apply (insert le_floor_eq [of "a + 1" x])
+  apply auto
+done
+
+lemma less_floor_eq_number_of [simp]:
+    "(number_of n < floor x) = (number_of n + 1 <= x)"
+by (simp add: less_floor_eq)
+
+lemma less_floor_eq_zero [simp]: "(0 < floor x) = (1 <= x)"
+by (simp add: less_floor_eq)
+
+lemma less_floor_eq_one [simp]: "(1 < floor x) = (2 <= x)"
+by (simp add: less_floor_eq)
+
+lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
+  apply (insert floor_less_eq [of x "a + 1"])
+  apply auto
+done
+
+lemma floor_le_eq_number_of [simp]:
+    "(floor x <= number_of n) = (x < number_of n + 1)"
+by (simp add: floor_le_eq)
+
+lemma floor_le_eq_zero [simp]: "(floor x <= 0) = (x < 1)"
+by (simp add: floor_le_eq)
+
+lemma floor_le_eq_one [simp]: "(floor x <= 1) = (x < 2)"
+by (simp add: floor_le_eq)
+
+lemma floor_add [simp]: "floor (x + real a) = floor x + a"
+  apply (subst order_eq_iff)
+  apply (rule conjI)
+  prefer 2
+  apply (subgoal_tac "floor x + a < floor (x + real a) + 1")
+  apply arith
+  apply (subst real_of_int_less_iff [THEN sym])
+  apply simp
+  apply (subgoal_tac "x + real a < real(floor(x + real a)) + 1")
+  apply (subgoal_tac "real (floor x) <= x")
+  apply arith
+  apply (rule real_of_int_floor_le)
+  apply (rule real_of_int_floor_add_one_gt)
+  apply (subgoal_tac "floor (x + real a) < floor x + a + 1")
+  apply arith
+  apply (subst real_of_int_less_iff [THEN sym])
+  apply simp
+  apply (subgoal_tac "real(floor(x + real a)) <= x + real a")
+  apply (subgoal_tac "x < real(floor x) + 1")
+  apply arith
+  apply (rule real_of_int_floor_add_one_gt)
+  apply (rule real_of_int_floor_le)
+done
+
+lemma floor_add_number_of [simp]:
+    "floor (x + number_of n) = floor x + number_of n"
+  apply (subst floor_add [THEN sym])
+  apply simp
+done
+
+lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
+  apply (subst floor_add [THEN sym])
+  apply simp
+done
+
+lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
+  apply (subst diff_minus)+
+  apply (subst real_of_int_minus [THEN sym])
+  apply (rule floor_add)
+done
+
+lemma floor_subtract_number_of [simp]: "floor (x - number_of n) =
+    floor x - number_of n"
+  apply (subst floor_subtract [THEN sym])
+  apply simp
+done
+
+lemma floor_subtract_one [simp]: "floor (x - 1) = floor x - 1"
+  apply (subst floor_subtract [THEN sym])
+  apply simp
+done
+
+lemma ceiling_zero [simp]: "ceiling 0 = 0"
+by (simp add: ceiling_def)
+
+lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
+by (simp add: ceiling_def)
+
+lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0"
+by auto
+
+lemma ceiling_floor [simp]: "ceiling (real (floor r)) = floor r"
+by (simp add: ceiling_def)
+
+lemma floor_ceiling [simp]: "floor (real (ceiling r)) = ceiling r"
+by (simp add: ceiling_def)
+
+lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)"
+apply (simp add: ceiling_def)
+apply (subst le_minus_iff, simp)
+done
+
+lemma ceiling_mono: "x < y ==> ceiling x \<le> ceiling y"
+by (simp add: floor_mono ceiling_def)
+
+lemma ceiling_mono2: "x \<le> y ==> ceiling x \<le> ceiling y"
+by (simp add: floor_mono2 ceiling_def)
+
+lemma real_of_int_ceiling_cancel [simp]:
+     "(real (ceiling x) = x) = (\<exists>n::int. x = real n)"
+apply (auto simp add: ceiling_def)
+apply (drule arg_cong [where f = uminus], auto)
+apply (rule_tac x = "-n" in exI, auto)
+done
+
+lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
+apply (simp add: ceiling_def)
+apply (rule minus_equation_iff [THEN iffD1])
+apply (simp add: floor_eq [where n = "-(n+1)"])
+done
+
+lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1"
+by (simp add: ceiling_def floor_eq2 [where n = "-(n+1)"])
+
+lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n  |] ==> ceiling x = n"
+by (simp add: ceiling_def floor_eq2 [where n = "-n"])
+
+lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
+by (simp add: ceiling_def)
+
+lemma ceiling_number_of_eq [simp]:
+     "ceiling (number_of n :: real) = (number_of n)"
+apply (subst real_number_of [symmetric])
+apply (rule ceiling_real_of_int)
+done
+
+lemma ceiling_one [simp]: "ceiling 1 = 1"
+  by (unfold ceiling_def, simp)
+
+lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r"
+apply (rule neg_le_iff_le [THEN iffD1])
+apply (simp add: ceiling_def diff_minus)
+done
+
+lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1"
+apply (insert real_of_int_ceiling_diff_one_le [of r])
+apply (simp del: real_of_int_ceiling_diff_one_le)
+done
+
+lemma ceiling_le: "x <= real a ==> ceiling x <= a"
+  apply (unfold ceiling_def)
+  apply (subgoal_tac "-a <= floor(- x)")
+  apply simp
+  apply (rule le_floor)
+  apply simp
+done
+
+lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
+  apply (unfold ceiling_def)
+  apply (subgoal_tac "real(- a) <= - x")
+  apply simp
+  apply (rule real_le_floor)
+  apply simp
+done
+
+lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
+  apply (rule iffI)
+  apply (erule ceiling_le_real)
+  apply (erule ceiling_le)
+done
+
+lemma ceiling_le_eq_number_of [simp]:
+    "(ceiling x <= number_of n) = (x <= number_of n)"
+by (simp add: ceiling_le_eq)
+
+lemma ceiling_le_zero_eq [simp]: "(ceiling x <= 0) = (x <= 0)"
+by (simp add: ceiling_le_eq)
+
+lemma ceiling_le_eq_one [simp]: "(ceiling x <= 1) = (x <= 1)"
+by (simp add: ceiling_le_eq)
+
+lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
+  apply (subst linorder_not_le [THEN sym])+
+  apply simp
+  apply (rule ceiling_le_eq)
+done
+
+lemma less_ceiling_eq_number_of [simp]:
+    "(number_of n < ceiling x) = (number_of n < x)"
+by (simp add: less_ceiling_eq)
+
+lemma less_ceiling_eq_zero [simp]: "(0 < ceiling x) = (0 < x)"
+by (simp add: less_ceiling_eq)
+
+lemma less_ceiling_eq_one [simp]: "(1 < ceiling x) = (1 < x)"
+by (simp add: less_ceiling_eq)
+
+lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
+  apply (insert ceiling_le_eq [of x "a - 1"])
+  apply auto
+done
+
+lemma ceiling_less_eq_number_of [simp]:
+    "(ceiling x < number_of n) = (x <= number_of n - 1)"
+by (simp add: ceiling_less_eq)
+
+lemma ceiling_less_eq_zero [simp]: "(ceiling x < 0) = (x <= -1)"
+by (simp add: ceiling_less_eq)
+
+lemma ceiling_less_eq_one [simp]: "(ceiling x < 1) = (x <= 0)"
+by (simp add: ceiling_less_eq)
+
+lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
+  apply (insert less_ceiling_eq [of "a - 1" x])
+  apply auto
+done
+
+lemma le_ceiling_eq_number_of [simp]:
+    "(number_of n <= ceiling x) = (number_of n - 1 < x)"
+by (simp add: le_ceiling_eq)
+
+lemma le_ceiling_eq_zero [simp]: "(0 <= ceiling x) = (-1 < x)"
+by (simp add: le_ceiling_eq)
+
+lemma le_ceiling_eq_one [simp]: "(1 <= ceiling x) = (0 < x)"
+by (simp add: le_ceiling_eq)
+
+lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
+  apply (unfold ceiling_def, simp)
+  apply (subst real_of_int_minus [THEN sym])
+  apply (subst floor_add)
+  apply simp
+done
+
+lemma ceiling_add_number_of [simp]: "ceiling (x + number_of n) =
+    ceiling x + number_of n"
+  apply (subst ceiling_add [THEN sym])
+  apply simp
+done
+
+lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
+  apply (subst ceiling_add [THEN sym])
+  apply simp
+done
+
+lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
+  apply (subst diff_minus)+
+  apply (subst real_of_int_minus [THEN sym])
+  apply (rule ceiling_add)
+done
+
+lemma ceiling_subtract_number_of [simp]: "ceiling (x - number_of n) =
+    ceiling x - number_of n"
+  apply (subst ceiling_subtract [THEN sym])
+  apply simp
+done
+
+lemma ceiling_subtract_one [simp]: "ceiling (x - 1) = ceiling x - 1"
+  apply (subst ceiling_subtract [THEN sym])
+  apply simp
+done
+
+subsection {* Versions for the natural numbers *}
+
+definition
+  natfloor :: "real => nat" where
+  "natfloor x = nat(floor x)"
+
+definition
+  natceiling :: "real => nat" where
+  "natceiling x = nat(ceiling x)"
+
+lemma natfloor_zero [simp]: "natfloor 0 = 0"
+  by (unfold natfloor_def, simp)
+
+lemma natfloor_one [simp]: "natfloor 1 = 1"
+  by (unfold natfloor_def, simp)
+
+lemma zero_le_natfloor [simp]: "0 <= natfloor x"
+  by (unfold natfloor_def, simp)
+
+lemma natfloor_number_of_eq [simp]: "natfloor (number_of n) = number_of n"
+  by (unfold natfloor_def, simp)
+
+lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
+  by (unfold natfloor_def, simp)
+
+lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
+  by (unfold natfloor_def, simp)
+
+lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
+  apply (unfold natfloor_def)
+  apply (subgoal_tac "floor x <= floor 0")
+  apply simp
+  apply (erule floor_mono2)
+done
+
+lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
+  apply (case_tac "0 <= x")
+  apply (subst natfloor_def)+
+  apply (subst nat_le_eq_zle)
+  apply force
+  apply (erule floor_mono2)
+  apply (subst natfloor_neg)
+  apply simp
+  apply simp
+done
+
+lemma le_natfloor: "real x <= a ==> x <= natfloor a"
+  apply (unfold natfloor_def)
+  apply (subst nat_int [THEN sym])
+  apply (subst nat_le_eq_zle)
+  apply simp
+  apply (rule le_floor)
+  apply simp
+done
+
+lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
+  apply (rule iffI)
+  apply (rule order_trans)
+  prefer 2
+  apply (erule real_natfloor_le)
+  apply (subst real_of_nat_le_iff)
+  apply assumption
+  apply (erule le_natfloor)
+done
+
+lemma le_natfloor_eq_number_of [simp]:
+    "~ neg((number_of n)::int) ==> 0 <= x ==>
+      (number_of n <= natfloor x) = (number_of n <= x)"
+  apply (subst le_natfloor_eq, assumption)
+  apply simp
+done
+
+lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
+  apply (case_tac "0 <= x")
+  apply (subst le_natfloor_eq, assumption, simp)
+  apply (rule iffI)
+  apply (subgoal_tac "natfloor x <= natfloor 0")
+  apply simp
+  apply (rule natfloor_mono)
+  apply simp
+  apply simp
+done
+
+lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
+  apply (unfold natfloor_def)
+  apply (subst nat_int [THEN sym]);back;
+  apply (subst eq_nat_nat_iff)
+  apply simp
+  apply simp
+  apply (rule floor_eq2)
+  apply auto
+done
+
+lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
+  apply (case_tac "0 <= x")
+  apply (unfold natfloor_def)
+  apply simp
+  apply simp_all
+done
+
+lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
+  apply (simp add: compare_rls)
+  apply (rule real_natfloor_add_one_gt)
+done
+
+lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
+  apply (subgoal_tac "z < real(natfloor z) + 1")
+  apply arith
+  apply (rule real_natfloor_add_one_gt)
+done
+
+lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
+  apply (unfold natfloor_def)
+  apply (subgoal_tac "real a = real (int a)")
+  apply (erule ssubst)
+  apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq)
+  apply simp
+done
+
+lemma natfloor_add_number_of [simp]:
+    "~neg ((number_of n)::int) ==> 0 <= x ==>
+      natfloor (x + number_of n) = natfloor x + number_of n"
+  apply (subst natfloor_add [THEN sym])
+  apply simp_all
+done
+
+lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
+  apply (subst natfloor_add [THEN sym])
+  apply assumption
+  apply simp
+done
+
+lemma natfloor_subtract [simp]: "real a <= x ==>
+    natfloor(x - real a) = natfloor x - a"
+  apply (unfold natfloor_def)
+  apply (subgoal_tac "real a = real (int a)")
+  apply (erule ssubst)
+  apply (simp del: real_of_int_of_nat_eq)
+  apply simp
+done
+
+lemma natceiling_zero [simp]: "natceiling 0 = 0"
+  by (unfold natceiling_def, simp)
+
+lemma natceiling_one [simp]: "natceiling 1 = 1"
+  by (unfold natceiling_def, simp)
+
+lemma zero_le_natceiling [simp]: "0 <= natceiling x"
+  by (unfold natceiling_def, simp)
+
+lemma natceiling_number_of_eq [simp]: "natceiling (number_of n) = number_of n"
+  by (unfold natceiling_def, simp)
+
+lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
+  by (unfold natceiling_def, simp)
+
+lemma real_natceiling_ge: "x <= real(natceiling x)"
+  apply (unfold natceiling_def)
+  apply (case_tac "x < 0")
+  apply simp
+  apply (subst real_nat_eq_real)
+  apply (subgoal_tac "ceiling 0 <= ceiling x")
+  apply simp
+  apply (rule ceiling_mono2)
+  apply simp
+  apply simp
+done
+
+lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
+  apply (unfold natceiling_def)
+  apply simp
+done
+
+lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
+  apply (case_tac "0 <= x")
+  apply (subst natceiling_def)+
+  apply (subst nat_le_eq_zle)
+  apply (rule disjI2)
+  apply (subgoal_tac "real (0::int) <= real(ceiling y)")
+  apply simp
+  apply (rule order_trans)
+  apply simp
+  apply (erule order_trans)
+  apply simp
+  apply (erule ceiling_mono2)
+  apply (subst natceiling_neg)
+  apply simp_all
+done
+
+lemma natceiling_le: "x <= real a ==> natceiling x <= a"
+  apply (unfold natceiling_def)
+  apply (case_tac "x < 0")
+  apply simp
+  apply (subst nat_int [THEN sym]);back;
+  apply (subst nat_le_eq_zle)
+  apply simp
+  apply (rule ceiling_le)
+  apply simp
+done
+
+lemma natceiling_le_eq: "0 <= x ==> (natceiling x <= a) = (x <= real a)"
+  apply (rule iffI)
+  apply (rule order_trans)
+  apply (rule real_natceiling_ge)
+  apply (subst real_of_nat_le_iff)
+  apply assumption
+  apply (erule natceiling_le)
+done
+
+lemma natceiling_le_eq_number_of [simp]:
+    "~ neg((number_of n)::int) ==> 0 <= x ==>
+      (natceiling x <= number_of n) = (x <= number_of n)"
+  apply (subst natceiling_le_eq, assumption)
+  apply simp
+done
+
+lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
+  apply (case_tac "0 <= x")
+  apply (subst natceiling_le_eq)
+  apply assumption
+  apply simp
+  apply (subst natceiling_neg)
+  apply simp
+  apply simp
+done
+
+lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
+  apply (unfold natceiling_def)
+  apply (simplesubst nat_int [THEN sym]) back back
+  apply (subgoal_tac "nat(int n) + 1 = nat(int n + 1)")
+  apply (erule ssubst)
+  apply (subst eq_nat_nat_iff)
+  apply (subgoal_tac "ceiling 0 <= ceiling x")
+  apply simp
+  apply (rule ceiling_mono2)
+  apply force
+  apply force
+  apply (rule ceiling_eq2)
+  apply (simp, simp)
+  apply (subst nat_add_distrib)
+  apply auto
+done
+
+lemma natceiling_add [simp]: "0 <= x ==>
+    natceiling (x + real a) = natceiling x + a"
+  apply (unfold natceiling_def)
+  apply (subgoal_tac "real a = real (int a)")
+  apply (erule ssubst)
+  apply (simp del: real_of_int_of_nat_eq)
+  apply (subst nat_add_distrib)
+  apply (subgoal_tac "0 = ceiling 0")
+  apply (erule ssubst)
+  apply (erule ceiling_mono2)
+  apply simp_all
+done
+
+lemma natceiling_add_number_of [simp]:
+    "~ neg ((number_of n)::int) ==> 0 <= x ==>
+      natceiling (x + number_of n) = natceiling x + number_of n"
+  apply (subst natceiling_add [THEN sym])
+  apply simp_all
+done
+
+lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
+  apply (subst natceiling_add [THEN sym])
+  apply assumption
+  apply simp
+done
+
+lemma natceiling_subtract [simp]: "real a <= x ==>
+    natceiling(x - real a) = natceiling x - a"
+  apply (unfold natceiling_def)
+  apply (subgoal_tac "real a = real (int a)")
+  apply (erule ssubst)
+  apply (simp del: real_of_int_of_nat_eq)
+  apply simp
+done
+
+lemma natfloor_div_nat: "1 <= x ==> y > 0 ==>
+  natfloor (x / real y) = natfloor x div y"
+proof -
+  assume "1 <= (x::real)" and "(y::nat) > 0"
+  have "natfloor x = (natfloor x) div y * y + (natfloor x) mod y"
+    by simp
+  then have a: "real(natfloor x) = real ((natfloor x) div y) * real y +
+    real((natfloor x) mod y)"
+    by (simp only: real_of_nat_add [THEN sym] real_of_nat_mult [THEN sym])
+  have "x = real(natfloor x) + (x - real(natfloor x))"
+    by simp
+  then have "x = real ((natfloor x) div y) * real y +
+      real((natfloor x) mod y) + (x - real(natfloor x))"
+    by (simp add: a)
+  then have "x / real y = ... / real y"
+    by simp
+  also have "... = real((natfloor x) div y) + real((natfloor x) mod y) /
+    real y + (x - real(natfloor x)) / real y"
+    by (auto simp add: ring_simps add_divide_distrib
+      diff_divide_distrib prems)
+  finally have "natfloor (x / real y) = natfloor(...)" by simp
+  also have "... = natfloor(real((natfloor x) mod y) /
+    real y + (x - real(natfloor x)) / real y + real((natfloor x) div y))"
+    by (simp add: add_ac)
+  also have "... = natfloor(real((natfloor x) mod y) /
+    real y + (x - real(natfloor x)) / real y) + (natfloor x) div y"
+    apply (rule natfloor_add)
+    apply (rule add_nonneg_nonneg)
+    apply (rule divide_nonneg_pos)
+    apply simp
+    apply (simp add: prems)
+    apply (rule divide_nonneg_pos)
+    apply (simp add: compare_rls)
+    apply (rule real_natfloor_le)
+    apply (insert prems, auto)
+    done
+  also have "natfloor(real((natfloor x) mod y) /
+    real y + (x - real(natfloor x)) / real y) = 0"
+    apply (rule natfloor_eq)
+    apply simp
+    apply (rule add_nonneg_nonneg)
+    apply (rule divide_nonneg_pos)
+    apply force
+    apply (force simp add: prems)
+    apply (rule divide_nonneg_pos)
+    apply (simp add: compare_rls)
+    apply (rule real_natfloor_le)
+    apply (auto simp add: prems)
+    apply (insert prems, arith)
+    apply (simp add: add_divide_distrib [THEN sym])
+    apply (subgoal_tac "real y = real y - 1 + 1")
+    apply (erule ssubst)
+    apply (rule add_le_less_mono)
+    apply (simp add: compare_rls)
+    apply (subgoal_tac "real(natfloor x mod y) + 1 =
+      real(natfloor x mod y + 1)")
+    apply (erule ssubst)
+    apply (subst real_of_nat_le_iff)
+    apply (subgoal_tac "natfloor x mod y < y")
+    apply arith
+    apply (rule mod_less_divisor)
+    apply auto
+    apply (simp add: compare_rls)
+    apply (subst add_commute)
+    apply (rule real_natfloor_add_one_gt)
+    done
+  finally show ?thesis by simp
+qed
+
+end