src/HOL/Rational.thy
changeset 28952 15a4b2cf8c34
parent 28562 4e74209f113e
child 29332 edc1e2a56398
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Rational.thy	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,1019 @@
+(*  Title:  HOL/Rational.thy
+    Author: Markus Wenzel, TU Muenchen
+*)
+
+header {* Rational numbers *}
+
+theory Rational
+imports Nat_Int_Bij GCD
+uses ("Tools/rat_arith.ML")
+begin
+
+subsection {* Rational numbers as quotient *}
+
+subsubsection {* Construction of the type of rational numbers *}
+
+definition
+  ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
+  "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
+
+lemma ratrel_iff [simp]:
+  "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
+  by (simp add: ratrel_def)
+
+lemma refl_ratrel: "refl {x. snd x \<noteq> 0} ratrel"
+  by (auto simp add: refl_def ratrel_def)
+
+lemma sym_ratrel: "sym ratrel"
+  by (simp add: ratrel_def sym_def)
+
+lemma trans_ratrel: "trans ratrel"
+proof (rule transI, unfold split_paired_all)
+  fix a b a' b' a'' b'' :: int
+  assume A: "((a, b), (a', b')) \<in> ratrel"
+  assume B: "((a', b'), (a'', b'')) \<in> ratrel"
+  have "b' * (a * b'') = b'' * (a * b')" by simp
+  also from A have "a * b' = a' * b" by auto
+  also have "b'' * (a' * b) = b * (a' * b'')" by simp
+  also from B have "a' * b'' = a'' * b'" by auto
+  also have "b * (a'' * b') = b' * (a'' * b)" by simp
+  finally have "b' * (a * b'') = b' * (a'' * b)" .
+  moreover from B have "b' \<noteq> 0" by auto
+  ultimately have "a * b'' = a'' * b" by simp
+  with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
+qed
+  
+lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
+  by (rule equiv.intro [OF refl_ratrel sym_ratrel trans_ratrel])
+
+lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
+lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
+
+lemma equiv_ratrel_iff [iff]: 
+  assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
+  shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
+  by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
+
+typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
+proof
+  have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
+  then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
+qed
+
+lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
+  by (simp add: Rat_def quotientI)
+
+declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
+
+
+subsubsection {* Representation and basic operations *}
+
+definition
+  Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
+  [code del]: "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
+
+code_datatype Fract
+
+lemma Rat_cases [case_names Fract, cases type: rat]:
+  assumes "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> C"
+  shows C
+  using assms by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
+
+lemma Rat_induct [case_names Fract, induct type: rat]:
+  assumes "\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)"
+  shows "P q"
+  using assms by (cases q) simp
+
+lemma eq_rat:
+  shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
+  and "\<And>a. Fract a 0 = Fract 0 1"
+  and "\<And>a c. Fract 0 a = Fract 0 c"
+  by (simp_all add: Fract_def)
+
+instantiation rat :: "{comm_ring_1, recpower}"
+begin
+
+definition
+  Zero_rat_def [code, code unfold]: "0 = Fract 0 1"
+
+definition
+  One_rat_def [code, code unfold]: "1 = Fract 1 1"
+
+definition
+  add_rat_def [code del]:
+  "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+    ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
+
+lemma add_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
+proof -
+  have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
+    respects2 ratrel"
+  by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
+  with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
+qed
+
+definition
+  minus_rat_def [code del]:
+  "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
+
+lemma minus_rat [simp, code]: "- Fract a b = Fract (- a) b"
+proof -
+  have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
+    by (simp add: congruent_def)
+  then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
+qed
+
+lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
+  by (cases "b = 0") (simp_all add: eq_rat)
+
+definition
+  diff_rat_def [code del]: "q - r = q + - (r::rat)"
+
+lemma diff_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
+  using assms by (simp add: diff_rat_def)
+
+definition
+  mult_rat_def [code del]:
+  "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+    ratrel``{(fst x * fst y, snd x * snd y)})"
+
+lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
+proof -
+  have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
+    by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
+  then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
+qed
+
+lemma mult_rat_cancel:
+  assumes "c \<noteq> 0"
+  shows "Fract (c * a) (c * b) = Fract a b"
+proof -
+  from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
+  then show ?thesis by (simp add: mult_rat [symmetric])
+qed
+
+primrec power_rat
+where
+  rat_power_0:     "q ^ 0 = (1\<Colon>rat)"
+  | rat_power_Suc: "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
+
+instance proof
+  fix q r s :: rat show "(q * r) * s = q * (r * s)" 
+    by (cases q, cases r, cases s) (simp add: eq_rat)
+next
+  fix q r :: rat show "q * r = r * q"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q :: rat show "1 * q = q"
+    by (cases q) (simp add: One_rat_def eq_rat)
+next
+  fix q r s :: rat show "(q + r) + s = q + (r + s)"
+    by (cases q, cases r, cases s) (simp add: eq_rat ring_simps)
+next
+  fix q r :: rat show "q + r = r + q"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q :: rat show "0 + q = q"
+    by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+  fix q :: rat show "- q + q = 0"
+    by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+  fix q r :: rat show "q - r = q + - r"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q r s :: rat show "(q + r) * s = q * s + r * s"
+    by (cases q, cases r, cases s) (simp add: eq_rat ring_simps)
+next
+  show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
+next
+  fix q :: rat show "q * 1 = q"
+    by (cases q) (simp add: One_rat_def eq_rat)
+next
+  fix q :: rat
+  fix n :: nat
+  show "q ^ 0 = 1" by simp
+  show "q ^ (Suc n) = q * (q ^ n)" by simp
+qed
+
+end
+
+lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
+  by (induct k) (simp_all add: Zero_rat_def One_rat_def)
+
+lemma of_int_rat: "of_int k = Fract k 1"
+  by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
+
+lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
+  by (rule of_nat_rat [symmetric])
+
+lemma Fract_of_int_eq: "Fract k 1 = of_int k"
+  by (rule of_int_rat [symmetric])
+
+instantiation rat :: number_ring
+begin
+
+definition
+  rat_number_of_def [code del]: "number_of w = Fract w 1"
+
+instance by intro_classes (simp add: rat_number_of_def of_int_rat)
+
+end
+
+lemma rat_number_collapse [code post]:
+  "Fract 0 k = 0"
+  "Fract 1 1 = 1"
+  "Fract (number_of k) 1 = number_of k"
+  "Fract k 0 = 0"
+  by (cases "k = 0")
+    (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
+
+lemma rat_number_expand [code unfold]:
+  "0 = Fract 0 1"
+  "1 = Fract 1 1"
+  "number_of k = Fract (number_of k) 1"
+  by (simp_all add: rat_number_collapse)
+
+lemma iszero_rat [simp]:
+  "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
+  by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
+
+lemma Rat_cases_nonzero [case_names Fract 0]:
+  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> C"
+  assumes 0: "q = 0 \<Longrightarrow> C"
+  shows C
+proof (cases "q = 0")
+  case True then show C using 0 by auto
+next
+  case False
+  then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
+  moreover with False have "0 \<noteq> Fract a b" by simp
+  with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
+  with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
+qed
+  
+
+
+subsubsection {* The field of rational numbers *}
+
+instantiation rat :: "{field, division_by_zero}"
+begin
+
+definition
+  inverse_rat_def [code del]:
+  "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
+     ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
+
+lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
+proof -
+  have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
+    by (auto simp add: congruent_def mult_commute)
+  then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
+qed
+
+definition
+  divide_rat_def [code del]: "q / r = q * inverse (r::rat)"
+
+lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
+  by (simp add: divide_rat_def)
+
+instance proof
+  show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
+    (simp add: rat_number_collapse)
+next
+  fix q :: rat
+  assume "q \<noteq> 0"
+  then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
+   (simp_all add: mult_rat  inverse_rat rat_number_expand eq_rat)
+next
+  fix q r :: rat
+  show "q / r = q * inverse r" by (simp add: divide_rat_def)
+qed
+
+end
+
+
+subsubsection {* Various *}
+
+lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
+  by (simp add: rat_number_expand)
+
+lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
+  by (simp add: Fract_of_int_eq [symmetric])
+
+lemma Fract_number_of_quotient [code post]:
+  "Fract (number_of k) (number_of l) = number_of k / number_of l"
+  unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
+
+lemma Fract_1_number_of [code post]:
+  "Fract 1 (number_of k) = 1 / number_of k"
+  unfolding Fract_of_int_quotient number_of_eq by simp
+
+subsubsection {* The ordered field of rational numbers *}
+
+instantiation rat :: linorder
+begin
+
+definition
+  le_rat_def [code del]:
+   "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+      {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
+
+lemma le_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
+proof -
+  have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
+    respects2 ratrel"
+  proof (clarsimp simp add: congruent2_def)
+    fix a b a' b' c d c' d'::int
+    assume neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
+    assume eq1: "a * b' = a' * b"
+    assume eq2: "c * d' = c' * d"
+
+    let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
+    {
+      fix a b c d x :: int assume x: "x \<noteq> 0"
+      have "?le a b c d = ?le (a * x) (b * x) c d"
+      proof -
+        from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
+        hence "?le a b c d =
+            ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
+          by (simp add: mult_le_cancel_right)
+        also have "... = ?le (a * x) (b * x) c d"
+          by (simp add: mult_ac)
+        finally show ?thesis .
+      qed
+    } note le_factor = this
+
+    let ?D = "b * d" and ?D' = "b' * d'"
+    from neq have D: "?D \<noteq> 0" by simp
+    from neq have "?D' \<noteq> 0" by simp
+    hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
+      by (rule le_factor)
+    also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')" 
+      by (simp add: mult_ac)
+    also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
+      by (simp only: eq1 eq2)
+    also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
+      by (simp add: mult_ac)
+    also from D have "... = ?le a' b' c' d'"
+      by (rule le_factor [symmetric])
+    finally show "?le a b c d = ?le a' b' c' d'" .
+  qed
+  with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
+qed
+
+definition
+  less_rat_def [code del]: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
+
+lemma less_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
+  using assms by (simp add: less_rat_def eq_rat order_less_le)
+
+instance proof
+  fix q r s :: rat
+  {
+    assume "q \<le> r" and "r \<le> s"
+    show "q \<le> s"
+    proof (insert prems, induct q, induct r, induct s)
+      fix a b c d e f :: int
+      assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
+      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
+      show "Fract a b \<le> Fract e f"
+      proof -
+        from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
+          by (auto simp add: zero_less_mult_iff linorder_neq_iff)
+        have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
+        proof -
+          from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+            by simp
+          with ff show ?thesis by (simp add: mult_le_cancel_right)
+        qed
+        also have "... = (c * f) * (d * f) * (b * b)" by algebra
+        also have "... \<le> (e * d) * (d * f) * (b * b)"
+        proof -
+          from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
+            by simp
+          with bb show ?thesis by (simp add: mult_le_cancel_right)
+        qed
+        finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
+          by (simp only: mult_ac)
+        with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
+          by (simp add: mult_le_cancel_right)
+        with neq show ?thesis by simp
+      qed
+    qed
+  next
+    assume "q \<le> r" and "r \<le> q"
+    show "q = r"
+    proof (insert prems, induct q, induct r)
+      fix a b c d :: int
+      assume neq: "b \<noteq> 0"  "d \<noteq> 0"
+      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
+      show "Fract a b = Fract c d"
+      proof -
+        from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+          by simp
+        also have "... \<le> (a * d) * (b * d)"
+        proof -
+          from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
+            by simp
+          thus ?thesis by (simp only: mult_ac)
+        qed
+        finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
+        moreover from neq have "b * d \<noteq> 0" by simp
+        ultimately have "a * d = c * b" by simp
+        with neq show ?thesis by (simp add: eq_rat)
+      qed
+    qed
+  next
+    show "q \<le> q"
+      by (induct q) simp
+    show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
+      by (induct q, induct r) (auto simp add: le_less mult_commute)
+    show "q \<le> r \<or> r \<le> q"
+      by (induct q, induct r)
+         (simp add: mult_commute, rule linorder_linear)
+  }
+qed
+
+end
+
+instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
+begin
+
+definition
+  abs_rat_def [code del]: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
+
+lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
+  by (auto simp add: abs_rat_def zabs_def Zero_rat_def less_rat not_less le_less minus_rat eq_rat zero_compare_simps)
+
+definition
+  sgn_rat_def [code del]: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
+
+lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
+  unfolding Fract_of_int_eq
+  by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
+    (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
+
+definition
+  "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
+
+definition
+  "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
+
+instance by intro_classes
+  (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
+
+end
+
+instance rat :: ordered_field
+proof
+  fix q r s :: rat
+  show "q \<le> r ==> s + q \<le> s + r"
+  proof (induct q, induct r, induct s)
+    fix a b c d e f :: int
+    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
+    assume le: "Fract a b \<le> Fract c d"
+    show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
+    proof -
+      let ?F = "f * f" from neq have F: "0 < ?F"
+        by (auto simp add: zero_less_mult_iff)
+      from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+        by simp
+      with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
+        by (simp add: mult_le_cancel_right)
+      with neq show ?thesis by (simp add: mult_ac int_distrib)
+    qed
+  qed
+  show "q < r ==> 0 < s ==> s * q < s * r"
+  proof (induct q, induct r, induct s)
+    fix a b c d e f :: int
+    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
+    assume le: "Fract a b < Fract c d"
+    assume gt: "0 < Fract e f"
+    show "Fract e f * Fract a b < Fract e f * Fract c d"
+    proof -
+      let ?E = "e * f" and ?F = "f * f"
+      from neq gt have "0 < ?E"
+        by (auto simp add: Zero_rat_def order_less_le eq_rat)
+      moreover from neq have "0 < ?F"
+        by (auto simp add: zero_less_mult_iff)
+      moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
+        by simp
+      ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
+        by (simp add: mult_less_cancel_right)
+      with neq show ?thesis
+        by (simp add: mult_ac)
+    qed
+  qed
+qed auto
+
+lemma Rat_induct_pos [case_names Fract, induct type: rat]:
+  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
+  shows "P q"
+proof (cases q)
+  have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
+  proof -
+    fix a::int and b::int
+    assume b: "b < 0"
+    hence "0 < -b" by simp
+    hence "P (Fract (-a) (-b))" by (rule step)
+    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
+  qed
+  case (Fract a b)
+  thus "P q" by (force simp add: linorder_neq_iff step step')
+qed
+
+lemma zero_less_Fract_iff:
+  "0 < b ==> (0 < Fract a b) = (0 < a)"
+by (simp add: Zero_rat_def order_less_imp_not_eq2 zero_less_mult_iff)
+
+
+subsection {* Arithmetic setup *}
+
+use "Tools/rat_arith.ML"
+declaration {* K rat_arith_setup *}
+
+
+subsection {* Embedding from Rationals to other Fields *}
+
+class field_char_0 = field + ring_char_0
+
+subclass (in ordered_field) field_char_0 ..
+
+context field_char_0
+begin
+
+definition of_rat :: "rat \<Rightarrow> 'a" where
+  [code del]: "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
+
+end
+
+lemma of_rat_congruent:
+  "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
+apply (rule congruent.intro)
+apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric])
+done
+
+lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
+  unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
+
+lemma of_rat_0 [simp]: "of_rat 0 = 0"
+by (simp add: Zero_rat_def of_rat_rat)
+
+lemma of_rat_1 [simp]: "of_rat 1 = 1"
+by (simp add: One_rat_def of_rat_rat)
+
+lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
+by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
+
+lemma of_rat_minus: "of_rat (- a) = - of_rat a"
+by (induct a, simp add: of_rat_rat)
+
+lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
+by (simp only: diff_minus of_rat_add of_rat_minus)
+
+lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
+apply (induct a, induct b, simp add: of_rat_rat)
+apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
+done
+
+lemma nonzero_of_rat_inverse:
+  "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
+apply (rule inverse_unique [symmetric])
+apply (simp add: of_rat_mult [symmetric])
+done
+
+lemma of_rat_inverse:
+  "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
+   inverse (of_rat a)"
+by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
+
+lemma nonzero_of_rat_divide:
+  "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
+by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
+
+lemma of_rat_divide:
+  "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
+   = of_rat a / of_rat b"
+by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
+
+lemma of_rat_power:
+  "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n"
+by (induct n) (simp_all add: of_rat_mult power_Suc)
+
+lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
+apply (induct a, induct b)
+apply (simp add: of_rat_rat eq_rat)
+apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
+done
+
+lemma of_rat_less:
+  "(of_rat r :: 'a::ordered_field) < of_rat s \<longleftrightarrow> r < s"
+proof (induct r, induct s)
+  fix a b c d :: int
+  assume not_zero: "b > 0" "d > 0"
+  then have "b * d > 0" by (rule mult_pos_pos)
+  have of_int_divide_less_eq:
+    "(of_int a :: 'a) / of_int b < of_int c / of_int d
+      \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
+    using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
+  show "(of_rat (Fract a b) :: 'a::ordered_field) < of_rat (Fract c d)
+    \<longleftrightarrow> Fract a b < Fract c d"
+    using not_zero `b * d > 0`
+    by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
+      (auto intro: mult_strict_right_mono mult_right_less_imp_less)
+qed
+
+lemma of_rat_less_eq:
+  "(of_rat r :: 'a::ordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
+  unfolding le_less by (auto simp add: of_rat_less)
+
+lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
+
+lemma of_rat_eq_id [simp]: "of_rat = id"
+proof
+  fix a
+  show "of_rat a = id a"
+  by (induct a)
+     (simp add: of_rat_rat Fract_of_int_eq [symmetric])
+qed
+
+text{*Collapse nested embeddings*}
+lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
+by (induct n) (simp_all add: of_rat_add)
+
+lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
+by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
+
+lemma of_rat_number_of_eq [simp]:
+  "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
+by (simp add: number_of_eq)
+
+lemmas zero_rat = Zero_rat_def
+lemmas one_rat = One_rat_def
+
+abbreviation
+  rat_of_nat :: "nat \<Rightarrow> rat"
+where
+  "rat_of_nat \<equiv> of_nat"
+
+abbreviation
+  rat_of_int :: "int \<Rightarrow> rat"
+where
+  "rat_of_int \<equiv> of_int"
+
+subsection {* The Set of Rational Numbers *}
+
+context field_char_0
+begin
+
+definition
+  Rats  :: "'a set" where
+  [code del]: "Rats = range of_rat"
+
+notation (xsymbols)
+  Rats  ("\<rat>")
+
+end
+
+lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
+by (simp add: Rats_def)
+
+lemma Rats_of_int [simp]: "of_int z \<in> Rats"
+by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
+by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_number_of [simp]:
+  "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
+by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_0 [simp]: "0 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_0 [symmetric])
+done
+
+lemma Rats_1 [simp]: "1 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_1 [symmetric])
+done
+
+lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_add [symmetric])
+done
+
+lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_minus [symmetric])
+done
+
+lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_diff [symmetric])
+done
+
+lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_mult [symmetric])
+done
+
+lemma nonzero_Rats_inverse:
+  fixes a :: "'a::field_char_0"
+  shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_inverse [symmetric])
+done
+
+lemma Rats_inverse [simp]:
+  fixes a :: "'a::{field_char_0,division_by_zero}"
+  shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_inverse [symmetric])
+done
+
+lemma nonzero_Rats_divide:
+  fixes a b :: "'a::field_char_0"
+  shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_divide [symmetric])
+done
+
+lemma Rats_divide [simp]:
+  fixes a b :: "'a::{field_char_0,division_by_zero}"
+  shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_divide [symmetric])
+done
+
+lemma Rats_power [simp]:
+  fixes a :: "'a::{field_char_0,recpower}"
+  shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_power [symmetric])
+done
+
+lemma Rats_cases [cases set: Rats]:
+  assumes "q \<in> \<rat>"
+  obtains (of_rat) r where "q = of_rat r"
+  unfolding Rats_def
+proof -
+  from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
+  then obtain r where "q = of_rat r" ..
+  then show thesis ..
+qed
+
+lemma Rats_induct [case_names of_rat, induct set: Rats]:
+  "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
+  by (rule Rats_cases) auto
+
+
+subsection {* The Rationals are Countably Infinite *}
+
+definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where
+"nat_to_rat_surj n = (let (a,b) = nat_to_nat2 n
+                      in Fract (nat_to_int_bij a) (nat_to_int_bij b))"
+
+lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj"
+unfolding surj_def
+proof
+  fix r::rat
+  show "\<exists>n. r = nat_to_rat_surj n"
+  proof(cases r)
+    fix i j assume [simp]: "r = Fract i j" and "j \<noteq> 0"
+    have "r = (let m = inv nat_to_int_bij i; n = inv nat_to_int_bij j
+               in nat_to_rat_surj(nat2_to_nat (m,n)))"
+      using nat2_to_nat_inj surj_f_inv_f[OF surj_nat_to_int_bij]
+      by(simp add:Let_def nat_to_rat_surj_def nat_to_nat2_def)
+    thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp:Let_def)
+  qed
+qed
+
+lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj"
+by (simp add: Rats_def surj_nat_to_rat_surj surj_range)
+
+context field_char_0
+begin
+
+lemma Rats_eq_range_of_rat_o_nat_to_rat_surj:
+  "\<rat> = range (of_rat o nat_to_rat_surj)"
+using surj_nat_to_rat_surj
+by (auto simp: Rats_def image_def surj_def)
+   (blast intro: arg_cong[where f = of_rat])
+
+lemma surj_of_rat_nat_to_rat_surj:
+  "r\<in>\<rat> \<Longrightarrow> \<exists>n. r = of_rat(nat_to_rat_surj n)"
+by(simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def)
+
+end
+
+
+subsection {* Implementation of rational numbers as pairs of integers *}
+
+lemma Fract_norm: "Fract (a div zgcd a b) (b div zgcd a b) = Fract a b"
+proof (cases "a = 0 \<or> b = 0")
+  case True then show ?thesis by (auto simp add: eq_rat)
+next
+  let ?c = "zgcd a b"
+  case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
+  then have "?c \<noteq> 0" by simp
+  then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
+  moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
+   by (simp add: semiring_div_class.mod_div_equality)
+  moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
+  moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
+  ultimately show ?thesis
+    by (simp add: mult_rat [symmetric])
+qed
+
+definition Fract_norm :: "int \<Rightarrow> int \<Rightarrow> rat" where
+  [simp, code del]: "Fract_norm a b = Fract a b"
+
+lemma [code]: "Fract_norm a b = (if a = 0 \<or> b = 0 then 0 else let c = zgcd a b in
+  if b > 0 then Fract (a div c) (b div c) else Fract (- (a div c)) (- (b div c)))"
+  by (simp add: eq_rat Zero_rat_def Let_def Fract_norm)
+
+lemma [code]:
+  "of_rat (Fract a b) = (if b \<noteq> 0 then of_int a / of_int b else 0)"
+  by (cases "b = 0") (simp_all add: rat_number_collapse of_rat_rat)
+
+instantiation rat :: eq
+begin
+
+definition [code del]: "eq_class.eq (a\<Colon>rat) b \<longleftrightarrow> a - b = 0"
+
+instance by default (simp add: eq_rat_def)
+
+lemma rat_eq_code [code]:
+  "eq_class.eq (Fract a b) (Fract c d) \<longleftrightarrow> (if b = 0
+       then c = 0 \<or> d = 0
+     else if d = 0
+       then a = 0 \<or> b = 0
+     else a * d =  b * c)"
+  by (auto simp add: eq eq_rat)
+
+lemma rat_eq_refl [code nbe]:
+  "eq_class.eq (r::rat) r \<longleftrightarrow> True"
+  by (rule HOL.eq_refl)
+
+end
+
+lemma le_rat':
+  assumes "b \<noteq> 0"
+    and "d \<noteq> 0"
+  shows "Fract a b \<le> Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
+proof -
+  have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
+  have "a * d * (b * d) \<le> c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) \<le> c * b * (sgn b * sgn d)"
+  proof (cases "b * d > 0")
+    case True
+    moreover from True have "sgn b * sgn d = 1"
+      by (simp add: sgn_times [symmetric] sgn_1_pos)
+    ultimately show ?thesis by (simp add: mult_le_cancel_right)
+  next
+    case False with assms have "b * d < 0" by (simp add: less_le)
+    moreover from this have "sgn b * sgn d = - 1"
+      by (simp only: sgn_times [symmetric] sgn_1_neg)
+    ultimately show ?thesis by (simp add: mult_le_cancel_right)
+  qed
+  also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
+    by (simp add: abs_sgn mult_ac)
+  finally show ?thesis using assms by simp
+qed
+
+lemma less_rat': 
+  assumes "b \<noteq> 0"
+    and "d \<noteq> 0"
+  shows "Fract a b < Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
+proof -
+  have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
+  have "a * d * (b * d) < c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) < c * b * (sgn b * sgn d)"
+  proof (cases "b * d > 0")
+    case True
+    moreover from True have "sgn b * sgn d = 1"
+      by (simp add: sgn_times [symmetric] sgn_1_pos)
+    ultimately show ?thesis by (simp add: mult_less_cancel_right)
+  next
+    case False with assms have "b * d < 0" by (simp add: less_le)
+    moreover from this have "sgn b * sgn d = - 1"
+      by (simp only: sgn_times [symmetric] sgn_1_neg)
+    ultimately show ?thesis by (simp add: mult_less_cancel_right)
+  qed
+  also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
+    by (simp add: abs_sgn mult_ac)
+  finally show ?thesis using assms by simp
+qed
+
+lemma rat_less_eq_code [code]:
+  "Fract a b \<le> Fract c d \<longleftrightarrow> (if b = 0
+       then sgn c * sgn d \<ge> 0
+     else if d = 0
+       then sgn a * sgn b \<le> 0
+     else a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d)"
+by (auto simp add: sgn_times mult_le_0_iff zero_le_mult_iff le_rat' eq_rat simp del: le_rat)
+  (auto simp add: sgn_times sgn_0_0 le_less sgn_1_pos [symmetric] sgn_1_neg [symmetric])
+
+lemma rat_le_eq_code [code]:
+  "Fract a b < Fract c d \<longleftrightarrow> (if b = 0
+       then sgn c * sgn d > 0
+     else if d = 0
+       then sgn a * sgn b < 0
+     else a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d)"
+by (auto simp add: sgn_times mult_less_0_iff zero_less_mult_iff less_rat' eq_rat simp del: less_rat)
+   (auto simp add: sgn_times sgn_0_0 sgn_1_pos [symmetric] sgn_1_neg [symmetric],
+     auto simp add: sgn_1_pos)
+
+lemma rat_plus_code [code]:
+  "Fract a b + Fract c d = (if b = 0
+     then Fract c d
+   else if d = 0
+     then Fract a b
+   else Fract_norm (a * d + c * b) (b * d))"
+  by (simp add: eq_rat, simp add: Zero_rat_def)
+
+lemma rat_times_code [code]:
+  "Fract a b * Fract c d = Fract_norm (a * c) (b * d)"
+  by simp
+
+lemma rat_minus_code [code]:
+  "Fract a b - Fract c d = (if b = 0
+     then Fract (- c) d
+   else if d = 0
+     then Fract a b
+   else Fract_norm (a * d - c * b) (b * d))"
+  by (simp add: eq_rat, simp add: Zero_rat_def)
+
+lemma rat_inverse_code [code]:
+  "inverse (Fract a b) = (if b = 0 then Fract 1 0
+    else if a < 0 then Fract (- b) (- a)
+    else Fract b a)"
+  by (simp add: eq_rat)
+
+lemma rat_divide_code [code]:
+  "Fract a b / Fract c d = Fract_norm (a * d) (b * c)"
+  by simp
+
+hide (open) const Fract_norm
+
+text {* Setup for SML code generator *}
+
+types_code
+  rat ("(int */ int)")
+attach (term_of) {*
+fun term_of_rat (p, q) =
+  let
+    val rT = Type ("Rational.rat", [])
+  in
+    if q = 1 orelse p = 0 then HOLogic.mk_number rT p
+    else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
+      HOLogic.mk_number rT p $ HOLogic.mk_number rT q
+  end;
+*}
+attach (test) {*
+fun gen_rat i =
+  let
+    val p = random_range 0 i;
+    val q = random_range 1 (i + 1);
+    val g = Integer.gcd p q;
+    val p' = p div g;
+    val q' = q div g;
+    val r = (if one_of [true, false] then p' else ~ p',
+      if p' = 0 then 0 else q')
+  in
+    (r, fn () => term_of_rat r)
+  end;
+*}
+
+consts_code
+  Fract ("(_,/ _)")
+
+consts_code
+  "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
+attach {*
+fun rat_of_int 0 = (0, 0)
+  | rat_of_int i = (i, 1);
+*}
+
+end
\ No newline at end of file