src/HOL/RealDef.thy
changeset 28952 15a4b2cf8c34
parent 28906 5f568bfc58d7
child 29667 53103fc8ffa3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/RealDef.thy	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,1158 @@
+(*  Title       : HOL/RealDef.thy
+    Author      : Jacques D. Fleuriot
+    Copyright   : 1998  University of Cambridge
+    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
+    Additional contributions by Jeremy Avigad
+*)
+
+header{*Defining the Reals from the Positive Reals*}
+
+theory RealDef
+imports PReal
+uses ("Tools/real_arith.ML")
+begin
+
+definition
+  realrel   ::  "((preal * preal) * (preal * preal)) set" where
+  [code del]: "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
+
+typedef (Real)  real = "UNIV//realrel"
+  by (auto simp add: quotient_def)
+
+definition
+  (** these don't use the overloaded "real" function: users don't see them **)
+  real_of_preal :: "preal => real" where
+  [code del]: "real_of_preal m = Abs_Real (realrel `` {(m + 1, 1)})"
+
+instantiation real :: "{zero, one, plus, minus, uminus, times, inverse, ord, abs, sgn}"
+begin
+
+definition
+  real_zero_def [code del]: "0 = Abs_Real(realrel``{(1, 1)})"
+
+definition
+  real_one_def [code del]: "1 = Abs_Real(realrel``{(1 + 1, 1)})"
+
+definition
+  real_add_def [code del]: "z + w =
+       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
+                 { Abs_Real(realrel``{(x+u, y+v)}) })"
+
+definition
+  real_minus_def [code del]: "- r =  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
+
+definition
+  real_diff_def [code del]: "r - (s::real) = r + - s"
+
+definition
+  real_mult_def [code del]:
+    "z * w =
+       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
+                 { Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
+
+definition
+  real_inverse_def [code del]: "inverse (R::real) = (THE S. (R = 0 & S = 0) | S * R = 1)"
+
+definition
+  real_divide_def [code del]: "R / (S::real) = R * inverse S"
+
+definition
+  real_le_def [code del]: "z \<le> (w::real) \<longleftrightarrow>
+    (\<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w)"
+
+definition
+  real_less_def [code del]: "x < (y\<Colon>real) \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
+
+definition
+  real_abs_def:  "abs (r::real) = (if r < 0 then - r else r)"
+
+definition
+  real_sgn_def: "sgn (x::real) = (if x=0 then 0 else if 0<x then 1 else - 1)"
+
+instance ..
+
+end
+
+subsection {* Equivalence relation over positive reals *}
+
+lemma preal_trans_lemma:
+  assumes "x + y1 = x1 + y"
+      and "x + y2 = x2 + y"
+  shows "x1 + y2 = x2 + (y1::preal)"
+proof -
+  have "(x1 + y2) + x = (x + y2) + x1" by (simp add: add_ac)
+  also have "... = (x2 + y) + x1"  by (simp add: prems)
+  also have "... = x2 + (x1 + y)"  by (simp add: add_ac)
+  also have "... = x2 + (x + y1)"  by (simp add: prems)
+  also have "... = (x2 + y1) + x"  by (simp add: add_ac)
+  finally have "(x1 + y2) + x = (x2 + y1) + x" .
+  thus ?thesis by (rule add_right_imp_eq)
+qed
+
+
+lemma realrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in> realrel) = (x1 + y2 = x2 + y1)"
+by (simp add: realrel_def)
+
+lemma equiv_realrel: "equiv UNIV realrel"
+apply (auto simp add: equiv_def refl_def sym_def trans_def realrel_def)
+apply (blast dest: preal_trans_lemma) 
+done
+
+text{*Reduces equality of equivalence classes to the @{term realrel} relation:
+  @{term "(realrel `` {x} = realrel `` {y}) = ((x,y) \<in> realrel)"} *}
+lemmas equiv_realrel_iff = 
+       eq_equiv_class_iff [OF equiv_realrel UNIV_I UNIV_I]
+
+declare equiv_realrel_iff [simp]
+
+
+lemma realrel_in_real [simp]: "realrel``{(x,y)}: Real"
+by (simp add: Real_def realrel_def quotient_def, blast)
+
+declare Abs_Real_inject [simp]
+declare Abs_Real_inverse [simp]
+
+
+text{*Case analysis on the representation of a real number as an equivalence
+      class of pairs of positive reals.*}
+lemma eq_Abs_Real [case_names Abs_Real, cases type: real]: 
+     "(!!x y. z = Abs_Real(realrel``{(x,y)}) ==> P) ==> P"
+apply (rule Rep_Real [of z, unfolded Real_def, THEN quotientE])
+apply (drule arg_cong [where f=Abs_Real])
+apply (auto simp add: Rep_Real_inverse)
+done
+
+
+subsection {* Addition and Subtraction *}
+
+lemma real_add_congruent2_lemma:
+     "[|a + ba = aa + b; ab + bc = ac + bb|]
+      ==> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
+apply (simp add: add_assoc)
+apply (rule add_left_commute [of ab, THEN ssubst])
+apply (simp add: add_assoc [symmetric])
+apply (simp add: add_ac)
+done
+
+lemma real_add:
+     "Abs_Real (realrel``{(x,y)}) + Abs_Real (realrel``{(u,v)}) =
+      Abs_Real (realrel``{(x+u, y+v)})"
+proof -
+  have "(\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). {Abs_Real (realrel `` {(x+u, y+v)})}) w) z)
+        respects2 realrel"
+    by (simp add: congruent2_def, blast intro: real_add_congruent2_lemma) 
+  thus ?thesis
+    by (simp add: real_add_def UN_UN_split_split_eq
+                  UN_equiv_class2 [OF equiv_realrel equiv_realrel])
+qed
+
+lemma real_minus: "- Abs_Real(realrel``{(x,y)}) = Abs_Real(realrel `` {(y,x)})"
+proof -
+  have "(\<lambda>(x,y). {Abs_Real (realrel``{(y,x)})}) respects realrel"
+    by (simp add: congruent_def add_commute) 
+  thus ?thesis
+    by (simp add: real_minus_def UN_equiv_class [OF equiv_realrel])
+qed
+
+instance real :: ab_group_add
+proof
+  fix x y z :: real
+  show "(x + y) + z = x + (y + z)"
+    by (cases x, cases y, cases z, simp add: real_add add_assoc)
+  show "x + y = y + x"
+    by (cases x, cases y, simp add: real_add add_commute)
+  show "0 + x = x"
+    by (cases x, simp add: real_add real_zero_def add_ac)
+  show "- x + x = 0"
+    by (cases x, simp add: real_minus real_add real_zero_def add_commute)
+  show "x - y = x + - y"
+    by (simp add: real_diff_def)
+qed
+
+
+subsection {* Multiplication *}
+
+lemma real_mult_congruent2_lemma:
+     "!!(x1::preal). [| x1 + y2 = x2 + y1 |] ==>
+          x * x1 + y * y1 + (x * y2 + y * x2) =
+          x * x2 + y * y2 + (x * y1 + y * x1)"
+apply (simp add: add_left_commute add_assoc [symmetric])
+apply (simp add: add_assoc right_distrib [symmetric])
+apply (simp add: add_commute)
+done
+
+lemma real_mult_congruent2:
+    "(%p1 p2.
+        (%(x1,y1). (%(x2,y2). 
+          { Abs_Real (realrel``{(x1*x2 + y1*y2, x1*y2+y1*x2)}) }) p2) p1)
+     respects2 realrel"
+apply (rule congruent2_commuteI [OF equiv_realrel], clarify)
+apply (simp add: mult_commute add_commute)
+apply (auto simp add: real_mult_congruent2_lemma)
+done
+
+lemma real_mult:
+      "Abs_Real((realrel``{(x1,y1)})) * Abs_Real((realrel``{(x2,y2)})) =
+       Abs_Real(realrel `` {(x1*x2+y1*y2,x1*y2+y1*x2)})"
+by (simp add: real_mult_def UN_UN_split_split_eq
+         UN_equiv_class2 [OF equiv_realrel equiv_realrel real_mult_congruent2])
+
+lemma real_mult_commute: "(z::real) * w = w * z"
+by (cases z, cases w, simp add: real_mult add_ac mult_ac)
+
+lemma real_mult_assoc: "((z1::real) * z2) * z3 = z1 * (z2 * z3)"
+apply (cases z1, cases z2, cases z3)
+apply (simp add: real_mult right_distrib add_ac mult_ac)
+done
+
+lemma real_mult_1: "(1::real) * z = z"
+apply (cases z)
+apply (simp add: real_mult real_one_def right_distrib
+                  mult_1_right mult_ac add_ac)
+done
+
+lemma real_add_mult_distrib: "((z1::real) + z2) * w = (z1 * w) + (z2 * w)"
+apply (cases z1, cases z2, cases w)
+apply (simp add: real_add real_mult right_distrib add_ac mult_ac)
+done
+
+text{*one and zero are distinct*}
+lemma real_zero_not_eq_one: "0 \<noteq> (1::real)"
+proof -
+  have "(1::preal) < 1 + 1"
+    by (simp add: preal_self_less_add_left)
+  thus ?thesis
+    by (simp add: real_zero_def real_one_def)
+qed
+
+instance real :: comm_ring_1
+proof
+  fix x y z :: real
+  show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
+  show "x * y = y * x" by (rule real_mult_commute)
+  show "1 * x = x" by (rule real_mult_1)
+  show "(x + y) * z = x * z + y * z" by (rule real_add_mult_distrib)
+  show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
+qed
+
+subsection {* Inverse and Division *}
+
+lemma real_zero_iff: "Abs_Real (realrel `` {(x, x)}) = 0"
+by (simp add: real_zero_def add_commute)
+
+text{*Instead of using an existential quantifier and constructing the inverse
+within the proof, we could define the inverse explicitly.*}
+
+lemma real_mult_inverse_left_ex: "x \<noteq> 0 ==> \<exists>y. y*x = (1::real)"
+apply (simp add: real_zero_def real_one_def, cases x)
+apply (cut_tac x = xa and y = y in linorder_less_linear)
+apply (auto dest!: less_add_left_Ex simp add: real_zero_iff)
+apply (rule_tac
+        x = "Abs_Real (realrel``{(1, inverse (D) + 1)})"
+       in exI)
+apply (rule_tac [2]
+        x = "Abs_Real (realrel``{(inverse (D) + 1, 1)})" 
+       in exI)
+apply (auto simp add: real_mult preal_mult_inverse_right ring_simps)
+done
+
+lemma real_mult_inverse_left: "x \<noteq> 0 ==> inverse(x)*x = (1::real)"
+apply (simp add: real_inverse_def)
+apply (drule real_mult_inverse_left_ex, safe)
+apply (rule theI, assumption, rename_tac z)
+apply (subgoal_tac "(z * x) * y = z * (x * y)")
+apply (simp add: mult_commute)
+apply (rule mult_assoc)
+done
+
+
+subsection{*The Real Numbers form a Field*}
+
+instance real :: field
+proof
+  fix x y z :: real
+  show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
+  show "x / y = x * inverse y" by (simp add: real_divide_def)
+qed
+
+
+text{*Inverse of zero!  Useful to simplify certain equations*}
+
+lemma INVERSE_ZERO: "inverse 0 = (0::real)"
+by (simp add: real_inverse_def)
+
+instance real :: division_by_zero
+proof
+  show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
+qed
+
+
+subsection{*The @{text "\<le>"} Ordering*}
+
+lemma real_le_refl: "w \<le> (w::real)"
+by (cases w, force simp add: real_le_def)
+
+text{*The arithmetic decision procedure is not set up for type preal.
+  This lemma is currently unused, but it could simplify the proofs of the
+  following two lemmas.*}
+lemma preal_eq_le_imp_le:
+  assumes eq: "a+b = c+d" and le: "c \<le> a"
+  shows "b \<le> (d::preal)"
+proof -
+  have "c+d \<le> a+d" by (simp add: prems)
+  hence "a+b \<le> a+d" by (simp add: prems)
+  thus "b \<le> d" by simp
+qed
+
+lemma real_le_lemma:
+  assumes l: "u1 + v2 \<le> u2 + v1"
+      and "x1 + v1 = u1 + y1"
+      and "x2 + v2 = u2 + y2"
+  shows "x1 + y2 \<le> x2 + (y1::preal)"
+proof -
+  have "(x1+v1) + (u2+y2) = (u1+y1) + (x2+v2)" by (simp add: prems)
+  hence "(x1+y2) + (u2+v1) = (x2+y1) + (u1+v2)" by (simp add: add_ac)
+  also have "... \<le> (x2+y1) + (u2+v1)" by (simp add: prems)
+  finally show ?thesis by simp
+qed
+
+lemma real_le: 
+     "(Abs_Real(realrel``{(x1,y1)}) \<le> Abs_Real(realrel``{(x2,y2)})) =  
+      (x1 + y2 \<le> x2 + y1)"
+apply (simp add: real_le_def)
+apply (auto intro: real_le_lemma)
+done
+
+lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
+by (cases z, cases w, simp add: real_le)
+
+lemma real_trans_lemma:
+  assumes "x + v \<le> u + y"
+      and "u + v' \<le> u' + v"
+      and "x2 + v2 = u2 + y2"
+  shows "x + v' \<le> u' + (y::preal)"
+proof -
+  have "(x+v') + (u+v) = (x+v) + (u+v')" by (simp add: add_ac)
+  also have "... \<le> (u+y) + (u+v')" by (simp add: prems)
+  also have "... \<le> (u+y) + (u'+v)" by (simp add: prems)
+  also have "... = (u'+y) + (u+v)"  by (simp add: add_ac)
+  finally show ?thesis by simp
+qed
+
+lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
+apply (cases i, cases j, cases k)
+apply (simp add: real_le)
+apply (blast intro: real_trans_lemma)
+done
+
+instance real :: order
+proof
+  fix u v :: real
+  show "u < v \<longleftrightarrow> u \<le> v \<and> \<not> v \<le> u" 
+    by (auto simp add: real_less_def intro: real_le_anti_sym)
+qed (assumption | rule real_le_refl real_le_trans real_le_anti_sym)+
+
+(* Axiom 'linorder_linear' of class 'linorder': *)
+lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
+apply (cases z, cases w)
+apply (auto simp add: real_le real_zero_def add_ac)
+done
+
+instance real :: linorder
+  by (intro_classes, rule real_le_linear)
+
+
+lemma real_le_eq_diff: "(x \<le> y) = (x-y \<le> (0::real))"
+apply (cases x, cases y) 
+apply (auto simp add: real_le real_zero_def real_diff_def real_add real_minus
+                      add_ac)
+apply (simp_all add: add_assoc [symmetric])
+done
+
+lemma real_add_left_mono: 
+  assumes le: "x \<le> y" shows "z + x \<le> z + (y::real)"
+proof -
+  have "z + x - (z + y) = (z + -z) + (x - y)" 
+    by (simp add: diff_minus add_ac) 
+  with le show ?thesis 
+    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"] diff_minus)
+qed
+
+lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
+by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
+
+lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
+by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
+
+lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
+apply (cases x, cases y)
+apply (simp add: linorder_not_le [where 'a = real, symmetric] 
+                 linorder_not_le [where 'a = preal] 
+                  real_zero_def real_le real_mult)
+  --{*Reduce to the (simpler) @{text "\<le>"} relation *}
+apply (auto dest!: less_add_left_Ex
+     simp add: add_ac mult_ac
+          right_distrib preal_self_less_add_left)
+done
+
+lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
+apply (rule real_sum_gt_zero_less)
+apply (drule real_less_sum_gt_zero [of x y])
+apply (drule real_mult_order, assumption)
+apply (simp add: right_distrib)
+done
+
+instantiation real :: distrib_lattice
+begin
+
+definition
+  "(inf \<Colon> real \<Rightarrow> real \<Rightarrow> real) = min"
+
+definition
+  "(sup \<Colon> real \<Rightarrow> real \<Rightarrow> real) = max"
+
+instance
+  by default (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1)
+
+end
+
+
+subsection{*The Reals Form an Ordered Field*}
+
+instance real :: ordered_field
+proof
+  fix x y z :: real
+  show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
+  show "x < y ==> 0 < z ==> z * x < z * y" by (rule real_mult_less_mono2)
+  show "\<bar>x\<bar> = (if x < 0 then -x else x)" by (simp only: real_abs_def)
+  show "sgn x = (if x=0 then 0 else if 0<x then 1 else - 1)"
+    by (simp only: real_sgn_def)
+qed
+
+instance real :: lordered_ab_group_add ..
+
+text{*The function @{term real_of_preal} requires many proofs, but it seems
+to be essential for proving completeness of the reals from that of the
+positive reals.*}
+
+lemma real_of_preal_add:
+     "real_of_preal ((x::preal) + y) = real_of_preal x + real_of_preal y"
+by (simp add: real_of_preal_def real_add left_distrib add_ac)
+
+lemma real_of_preal_mult:
+     "real_of_preal ((x::preal) * y) = real_of_preal x* real_of_preal y"
+by (simp add: real_of_preal_def real_mult right_distrib add_ac mult_ac)
+
+
+text{*Gleason prop 9-4.4 p 127*}
+lemma real_of_preal_trichotomy:
+      "\<exists>m. (x::real) = real_of_preal m | x = 0 | x = -(real_of_preal m)"
+apply (simp add: real_of_preal_def real_zero_def, cases x)
+apply (auto simp add: real_minus add_ac)
+apply (cut_tac x = x and y = y in linorder_less_linear)
+apply (auto dest!: less_add_left_Ex simp add: add_assoc [symmetric])
+done
+
+lemma real_of_preal_leD:
+      "real_of_preal m1 \<le> real_of_preal m2 ==> m1 \<le> m2"
+by (simp add: real_of_preal_def real_le)
+
+lemma real_of_preal_lessI: "m1 < m2 ==> real_of_preal m1 < real_of_preal m2"
+by (auto simp add: real_of_preal_leD linorder_not_le [symmetric])
+
+lemma real_of_preal_lessD:
+      "real_of_preal m1 < real_of_preal m2 ==> m1 < m2"
+by (simp add: real_of_preal_def real_le linorder_not_le [symmetric])
+
+lemma real_of_preal_less_iff [simp]:
+     "(real_of_preal m1 < real_of_preal m2) = (m1 < m2)"
+by (blast intro: real_of_preal_lessI real_of_preal_lessD)
+
+lemma real_of_preal_le_iff:
+     "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma real_of_preal_zero_less: "0 < real_of_preal m"
+apply (insert preal_self_less_add_left [of 1 m])
+apply (auto simp add: real_zero_def real_of_preal_def
+                      real_less_def real_le_def add_ac)
+apply (rule_tac x="m + 1" in exI, rule_tac x="1" in exI)
+apply (simp add: add_ac)
+done
+
+lemma real_of_preal_minus_less_zero: "- real_of_preal m < 0"
+by (simp add: real_of_preal_zero_less)
+
+lemma real_of_preal_not_minus_gt_zero: "~ 0 < - real_of_preal m"
+proof -
+  from real_of_preal_minus_less_zero
+  show ?thesis by (blast dest: order_less_trans)
+qed
+
+
+subsection{*Theorems About the Ordering*}
+
+lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
+apply (auto simp add: real_of_preal_zero_less)
+apply (cut_tac x = x in real_of_preal_trichotomy)
+apply (blast elim!: real_of_preal_not_minus_gt_zero [THEN notE])
+done
+
+lemma real_gt_preal_preal_Ex:
+     "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
+by (blast dest!: real_of_preal_zero_less [THEN order_less_trans]
+             intro: real_gt_zero_preal_Ex [THEN iffD1])
+
+lemma real_ge_preal_preal_Ex:
+     "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
+by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
+
+lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
+by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
+            intro: real_of_preal_zero_less [THEN [2] order_less_trans] 
+            simp add: real_of_preal_zero_less)
+
+lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
+by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
+
+
+subsection{*More Lemmas*}
+
+lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
+by auto
+
+lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
+by auto
+
+lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
+  by (force elim: order_less_asym
+            simp add: Ring_and_Field.mult_less_cancel_right)
+
+lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
+apply (simp add: mult_le_cancel_right)
+apply (blast intro: elim: order_less_asym)
+done
+
+lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
+by(simp add:mult_commute)
+
+lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
+by (simp add: one_less_inverse_iff) (* TODO: generalize/move *)
+
+
+subsection {* Embedding numbers into the Reals *}
+
+abbreviation
+  real_of_nat :: "nat \<Rightarrow> real"
+where
+  "real_of_nat \<equiv> of_nat"
+
+abbreviation
+  real_of_int :: "int \<Rightarrow> real"
+where
+  "real_of_int \<equiv> of_int"
+
+abbreviation
+  real_of_rat :: "rat \<Rightarrow> real"
+where
+  "real_of_rat \<equiv> of_rat"
+
+consts
+  (*overloaded constant for injecting other types into "real"*)
+  real :: "'a => real"
+
+defs (overloaded)
+  real_of_nat_def [code unfold]: "real == real_of_nat"
+  real_of_int_def [code unfold]: "real == real_of_int"
+
+lemma real_eq_of_nat: "real = of_nat"
+  unfolding real_of_nat_def ..
+
+lemma real_eq_of_int: "real = of_int"
+  unfolding real_of_int_def ..
+
+lemma real_of_int_zero [simp]: "real (0::int) = 0"  
+by (simp add: real_of_int_def) 
+
+lemma real_of_one [simp]: "real (1::int) = (1::real)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))"
+  apply (subst real_eq_of_int)+
+  apply (rule of_int_setsum)
+done
+
+lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) = 
+    (PROD x:A. real(f x))"
+  apply (subst real_eq_of_int)+
+  apply (rule of_int_setprod)
+done
+
+lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \<le> real y) = (x \<le> y)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)"
+by (simp add: real_of_int_def) 
+
+lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)" 
+by (simp add: real_of_int_def)
+
+lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))"
+by (auto simp add: abs_if)
+
+lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)"
+  apply (subgoal_tac "real n + 1 = real (n + 1)")
+  apply (simp del: real_of_int_add)
+  apply auto
+done
+
+lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)"
+  apply (subgoal_tac "real m + 1 = real (m + 1)")
+  apply (simp del: real_of_int_add)
+  apply simp
+done
+
+lemma real_of_int_div_aux: "d ~= 0 ==> (real (x::int)) / (real d) = 
+    real (x div d) + (real (x mod d)) / (real d)"
+proof -
+  assume "d ~= 0"
+  have "x = (x div d) * d + x mod d"
+    by auto
+  then have "real x = real (x div d) * real d + real(x mod d)"
+    by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym])
+  then have "real x / real d = ... / real d"
+    by simp
+  then show ?thesis
+    by (auto simp add: add_divide_distrib ring_simps prems)
+qed
+
+lemma real_of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
+    real(n div d) = real n / real d"
+  apply (frule real_of_int_div_aux [of d n])
+  apply simp
+  apply (simp add: zdvd_iff_zmod_eq_0)
+done
+
+lemma real_of_int_div2:
+  "0 <= real (n::int) / real (x) - real (n div x)"
+  apply (case_tac "x = 0")
+  apply simp
+  apply (case_tac "0 < x")
+  apply (simp add: compare_rls)
+  apply (subst real_of_int_div_aux)
+  apply simp
+  apply simp
+  apply (subst zero_le_divide_iff)
+  apply auto
+  apply (simp add: compare_rls)
+  apply (subst real_of_int_div_aux)
+  apply simp
+  apply simp
+  apply (subst zero_le_divide_iff)
+  apply auto
+done
+
+lemma real_of_int_div3:
+  "real (n::int) / real (x) - real (n div x) <= 1"
+  apply(case_tac "x = 0")
+  apply simp
+  apply (simp add: compare_rls)
+  apply (subst real_of_int_div_aux)
+  apply assumption
+  apply simp
+  apply (subst divide_le_eq)
+  apply clarsimp
+  apply (rule conjI)
+  apply (rule impI)
+  apply (rule order_less_imp_le)
+  apply simp
+  apply (rule impI)
+  apply (rule order_less_imp_le)
+  apply simp
+done
+
+lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x" 
+by (insert real_of_int_div2 [of n x], simp)
+
+
+subsection{*Embedding the Naturals into the Reals*}
+
+lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
+by (simp add: real_of_nat_def)
+
+(*Not for addsimps: often the LHS is used to represent a positive natural*)
+lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_less_iff [iff]: 
+     "(real (n::nat) < real m) = (n < m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
+by (simp add: real_of_nat_def zero_le_imp_of_nat)
+
+lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
+by (simp add: real_of_nat_def del: of_nat_Suc)
+
+lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
+by (simp add: real_of_nat_def of_nat_mult)
+
+lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = 
+    (SUM x:A. real(f x))"
+  apply (subst real_eq_of_nat)+
+  apply (rule of_nat_setsum)
+done
+
+lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) = 
+    (PROD x:A. real(f x))"
+  apply (subst real_eq_of_nat)+
+  apply (rule of_nat_setprod)
+done
+
+lemma real_of_card: "real (card A) = setsum (%x.1) A"
+  apply (subst card_eq_setsum)
+  apply (subst real_of_nat_setsum)
+  apply simp
+done
+
+lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
+by (simp add: add: real_of_nat_def of_nat_diff)
+
+lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
+by (auto simp: real_of_nat_def)
+
+lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
+by (simp add: add: real_of_nat_def)
+
+lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
+by (simp add: add: real_of_nat_def)
+
+lemma real_of_nat_ge_zero_cancel_iff [simp]: "(0 \<le> real (n::nat))"
+by (simp add: add: real_of_nat_def)
+
+lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)"
+  apply (subgoal_tac "real n + 1 = real (Suc n)")
+  apply simp
+  apply (auto simp add: real_of_nat_Suc)
+done
+
+lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)"
+  apply (subgoal_tac "real m + 1 = real (Suc m)")
+  apply (simp add: less_Suc_eq_le)
+  apply (simp add: real_of_nat_Suc)
+done
+
+lemma real_of_nat_div_aux: "0 < d ==> (real (x::nat)) / (real d) = 
+    real (x div d) + (real (x mod d)) / (real d)"
+proof -
+  assume "0 < d"
+  have "x = (x div d) * d + x mod d"
+    by auto
+  then have "real x = real (x div d) * real d + real(x mod d)"
+    by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym])
+  then have "real x / real d = \<dots> / real d"
+    by simp
+  then show ?thesis
+    by (auto simp add: add_divide_distrib ring_simps prems)
+qed
+
+lemma real_of_nat_div: "0 < (d::nat) ==> d dvd n ==>
+    real(n div d) = real n / real d"
+  apply (frule real_of_nat_div_aux [of d n])
+  apply simp
+  apply (subst dvd_eq_mod_eq_0 [THEN sym])
+  apply assumption
+done
+
+lemma real_of_nat_div2:
+  "0 <= real (n::nat) / real (x) - real (n div x)"
+apply(case_tac "x = 0")
+ apply (simp)
+apply (simp add: compare_rls)
+apply (subst real_of_nat_div_aux)
+ apply simp
+apply simp
+apply (subst zero_le_divide_iff)
+apply simp
+done
+
+lemma real_of_nat_div3:
+  "real (n::nat) / real (x) - real (n div x) <= 1"
+apply(case_tac "x = 0")
+apply (simp)
+apply (simp add: compare_rls)
+apply (subst real_of_nat_div_aux)
+ apply simp
+apply simp
+done
+
+lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" 
+  by (insert real_of_nat_div2 [of n x], simp)
+
+lemma real_of_int_real_of_nat: "real (int n) = real n"
+by (simp add: real_of_nat_def real_of_int_def int_eq_of_nat)
+
+lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
+by (simp add: real_of_int_def real_of_nat_def)
+
+lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x"
+  apply (subgoal_tac "real(int(nat x)) = real(nat x)")
+  apply force
+  apply (simp only: real_of_int_real_of_nat)
+done
+
+
+subsection{* Rationals *}
+
+lemma Rats_real_nat[simp]: "real(n::nat) \<in> \<rat>"
+by (simp add: real_eq_of_nat)
+
+
+lemma Rats_eq_int_div_int:
+  "\<rat> = { real(i::int)/real(j::int) |i j. j \<noteq> 0}" (is "_ = ?S")
+proof
+  show "\<rat> \<subseteq> ?S"
+  proof
+    fix x::real assume "x : \<rat>"
+    then obtain r where "x = of_rat r" unfolding Rats_def ..
+    have "of_rat r : ?S"
+      by (cases r)(auto simp add:of_rat_rat real_eq_of_int)
+    thus "x : ?S" using `x = of_rat r` by simp
+  qed
+next
+  show "?S \<subseteq> \<rat>"
+  proof(auto simp:Rats_def)
+    fix i j :: int assume "j \<noteq> 0"
+    hence "real i / real j = of_rat(Fract i j)"
+      by (simp add:of_rat_rat real_eq_of_int)
+    thus "real i / real j \<in> range of_rat" by blast
+  qed
+qed
+
+lemma Rats_eq_int_div_nat:
+  "\<rat> = { real(i::int)/real(n::nat) |i n. n \<noteq> 0}"
+proof(auto simp:Rats_eq_int_div_int)
+  fix i j::int assume "j \<noteq> 0"
+  show "EX (i'::int) (n::nat). real i/real j = real i'/real n \<and> 0<n"
+  proof cases
+    assume "j>0"
+    hence "real i/real j = real i/real(nat j) \<and> 0<nat j"
+      by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
+    thus ?thesis by blast
+  next
+    assume "~ j>0"
+    hence "real i/real j = real(-i)/real(nat(-j)) \<and> 0<nat(-j)" using `j\<noteq>0`
+      by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
+    thus ?thesis by blast
+  qed
+next
+  fix i::int and n::nat assume "0 < n"
+  hence "real i/real n = real i/real(int n) \<and> int n \<noteq> 0" by simp
+  thus "\<exists>(i'::int) j::int. real i/real n = real i'/real j \<and> j \<noteq> 0" by blast
+qed
+
+lemma Rats_abs_nat_div_natE:
+  assumes "x \<in> \<rat>"
+  obtains m n where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1"
+proof -
+  from `x \<in> \<rat>` obtain i::int and n::nat where "n \<noteq> 0" and "x = real i / real n"
+    by(auto simp add: Rats_eq_int_div_nat)
+  hence "\<bar>x\<bar> = real(nat(abs i)) / real n" by simp
+  then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast
+  let ?gcd = "gcd m n"
+  from `n\<noteq>0` have gcd: "?gcd \<noteq> 0" by (simp add: gcd_zero)
+  let ?k = "m div ?gcd"
+  let ?l = "n div ?gcd"
+  let ?gcd' = "gcd ?k ?l"
+  have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m"
+    by (rule dvd_mult_div_cancel)
+  have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n"
+    by (rule dvd_mult_div_cancel)
+  from `n\<noteq>0` and gcd_l have "?l \<noteq> 0" by (auto iff del: neq0_conv)
+  moreover
+  have "\<bar>x\<bar> = real ?k / real ?l"
+  proof -
+    from gcd have "real ?k / real ?l =
+        real (?gcd * ?k) / real (?gcd * ?l)" by simp
+    also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp
+    also from x_rat have "\<dots> = \<bar>x\<bar>" ..
+    finally show ?thesis ..
+  qed
+  moreover
+  have "?gcd' = 1"
+  proof -
+    have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)"
+      by (rule gcd_mult_distrib2)
+    with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp
+    with gcd show ?thesis by simp
+  qed
+  ultimately show ?thesis ..
+qed
+
+
+subsection{*Numerals and Arithmetic*}
+
+instantiation real :: number_ring
+begin
+
+definition
+  real_number_of_def [code del]: "number_of w = real_of_int w"
+
+instance
+  by intro_classes (simp add: real_number_of_def)
+
+end
+
+lemma [code unfold, symmetric, code post]:
+  "number_of k = real_of_int (number_of k)"
+  unfolding number_of_is_id real_number_of_def ..
+
+
+text{*Collapse applications of @{term real} to @{term number_of}*}
+lemma real_number_of [simp]: "real (number_of v :: int) = number_of v"
+by (simp add:  real_of_int_def of_int_number_of_eq)
+
+lemma real_of_nat_number_of [simp]:
+     "real (number_of v :: nat) =  
+        (if neg (number_of v :: int) then 0  
+         else (number_of v :: real))"
+by (simp add: real_of_int_real_of_nat [symmetric] int_nat_number_of)
+ 
+
+use "Tools/real_arith.ML"
+declaration {* K real_arith_setup *}
+
+
+subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
+
+text{*Needed in this non-standard form by Hyperreal/Transcendental*}
+lemma real_0_le_divide_iff:
+     "((0::real) \<le> x/y) = ((x \<le> 0 | 0 \<le> y) & (0 \<le> x | y \<le> 0))"
+by (simp add: real_divide_def zero_le_mult_iff, auto)
+
+lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" 
+by arith
+
+lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
+by auto
+
+lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
+by auto
+
+lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
+by auto
+
+lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
+by auto
+
+lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
+by auto
+
+
+(*
+FIXME: we should have this, as for type int, but many proofs would break.
+It replaces x+-y by x-y.
+declare real_diff_def [symmetric, simp]
+*)
+
+subsubsection{*Density of the Reals*}
+
+lemma real_lbound_gt_zero:
+     "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
+apply (rule_tac x = " (min d1 d2) /2" in exI)
+apply (simp add: min_def)
+done
+
+
+text{*Similar results are proved in @{text Ring_and_Field}*}
+lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
+  by auto
+
+lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
+  by auto
+
+
+subsection{*Absolute Value Function for the Reals*}
+
+lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
+by (simp add: abs_if)
+
+(* FIXME: redundant, but used by Integration/RealRandVar.thy in AFP *)
+lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
+by (force simp add: OrderedGroup.abs_le_iff)
+
+lemma abs_add_one_gt_zero [simp]: "(0::real) < 1 + abs(x)"
+by (simp add: abs_if)
+
+lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
+by (rule abs_of_nonneg [OF real_of_nat_ge_zero])
+
+lemma abs_add_one_not_less_self [simp]: "~ abs(x) + (1::real) < x"
+by simp
+ 
+lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
+by simp
+
+instance real :: lordered_ring
+proof
+  fix a::real
+  show "abs a = sup a (-a)"
+    by (auto simp add: real_abs_def sup_real_def)
+qed
+
+
+subsection {* Implementation of rational real numbers *}
+
+definition Ratreal :: "rat \<Rightarrow> real" where
+  [simp]: "Ratreal = of_rat"
+
+code_datatype Ratreal
+
+lemma Ratreal_number_collapse [code post]:
+  "Ratreal 0 = 0"
+  "Ratreal 1 = 1"
+  "Ratreal (number_of k) = number_of k"
+by simp_all
+
+lemma zero_real_code [code, code unfold]:
+  "0 = Ratreal 0"
+by simp
+
+lemma one_real_code [code, code unfold]:
+  "1 = Ratreal 1"
+by simp
+
+lemma number_of_real_code [code unfold]:
+  "number_of k = Ratreal (number_of k)"
+by simp
+
+lemma Ratreal_number_of_quotient [code post]:
+  "Ratreal (number_of r) / Ratreal (number_of s) = number_of r / number_of s"
+by simp
+
+lemma Ratreal_number_of_quotient2 [code post]:
+  "Ratreal (number_of r / number_of s) = number_of r / number_of s"
+unfolding Ratreal_number_of_quotient [symmetric] Ratreal_def of_rat_divide ..
+
+instantiation real :: eq
+begin
+
+definition "eq_class.eq (x\<Colon>real) y \<longleftrightarrow> x - y = 0"
+
+instance by default (simp add: eq_real_def)
+
+lemma real_eq_code [code]: "eq_class.eq (Ratreal x) (Ratreal y) \<longleftrightarrow> eq_class.eq x y"
+  by (simp add: eq_real_def eq)
+
+lemma real_eq_refl [code nbe]:
+  "eq_class.eq (x::real) x \<longleftrightarrow> True"
+  by (rule HOL.eq_refl)
+
+end
+
+lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y"
+  by (simp add: of_rat_less_eq)
+
+lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y"
+  by (simp add: of_rat_less)
+
+lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)"
+  by (simp add: of_rat_add)
+
+lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)"
+  by (simp add: of_rat_mult)
+
+lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)"
+  by (simp add: of_rat_minus)
+
+lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)"
+  by (simp add: of_rat_diff)
+
+lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)"
+  by (simp add: of_rat_inverse)
+ 
+lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)"
+  by (simp add: of_rat_divide)
+
+text {* Setup for SML code generator *}
+
+types_code
+  real ("(int */ int)")
+attach (term_of) {*
+fun term_of_real (p, q) =
+  let
+    val rT = HOLogic.realT
+  in
+    if q = 1 orelse p = 0 then HOLogic.mk_number rT p
+    else @{term "op / \<Colon> real \<Rightarrow> real \<Rightarrow> real"} $
+      HOLogic.mk_number rT p $ HOLogic.mk_number rT q
+  end;
+*}
+attach (test) {*
+fun gen_real i =
+  let
+    val p = random_range 0 i;
+    val q = random_range 1 (i + 1);
+    val g = Integer.gcd p q;
+    val p' = p div g;
+    val q' = q div g;
+    val r = (if one_of [true, false] then p' else ~ p',
+      if p' = 0 then 0 else q')
+  in
+    (r, fn () => term_of_real r)
+  end;
+*}
+
+consts_code
+  Ratreal ("(_)")
+
+consts_code
+  "of_int :: int \<Rightarrow> real" ("\<module>real'_of'_int")
+attach {*
+fun real_of_int 0 = (0, 0)
+  | real_of_int i = (i, 1);
+*}
+
+end