src/HOL/Series.thy
changeset 28952 15a4b2cf8c34
parent 27108 e447b3107696
child 29197 6d4cb27ed19c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Series.thy	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,654 @@
+(*  Title       : Series.thy
+    Author      : Jacques D. Fleuriot
+    Copyright   : 1998  University of Cambridge
+
+Converted to Isar and polished by lcp
+Converted to setsum and polished yet more by TNN
+Additional contributions by Jeremy Avigad
+*) 
+
+header{*Finite Summation and Infinite Series*}
+
+theory Series
+imports "~~/src/HOL/Hyperreal/SEQ"
+begin
+
+definition
+   sums  :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool"
+     (infixr "sums" 80) where
+   "f sums s = (%n. setsum f {0..<n}) ----> s"
+
+definition
+   summable :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> bool" where
+   "summable f = (\<exists>s. f sums s)"
+
+definition
+   suminf   :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a" where
+   "suminf f = (THE s. f sums s)"
+
+syntax
+  "_suminf" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a" ("\<Sum>_. _" [0, 10] 10)
+translations
+  "\<Sum>i. b" == "CONST suminf (%i. b)"
+
+
+lemma sumr_diff_mult_const:
+ "setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}"
+by (simp add: diff_minus setsum_addf real_of_nat_def)
+
+lemma real_setsum_nat_ivl_bounded:
+     "(!!p. p < n \<Longrightarrow> f(p) \<le> K)
+      \<Longrightarrow> setsum f {0..<n::nat} \<le> real n * K"
+using setsum_bounded[where A = "{0..<n}"]
+by (auto simp:real_of_nat_def)
+
+(* Generalize from real to some algebraic structure? *)
+lemma sumr_minus_one_realpow_zero [simp]:
+  "(\<Sum>i=0..<2*n. (-1) ^ Suc i) = (0::real)"
+by (induct "n", auto)
+
+(* FIXME this is an awful lemma! *)
+lemma sumr_one_lb_realpow_zero [simp]:
+  "(\<Sum>n=Suc 0..<n. f(n) * (0::real) ^ n) = 0"
+by (rule setsum_0', simp)
+
+lemma sumr_group:
+     "(\<Sum>m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}"
+apply (subgoal_tac "k = 0 | 0 < k", auto)
+apply (induct "n")
+apply (simp_all add: setsum_add_nat_ivl add_commute)
+done
+
+lemma sumr_offset3:
+  "setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)) + setsum f {0..<k}"
+apply (subst setsum_shift_bounds_nat_ivl [symmetric])
+apply (simp add: setsum_add_nat_ivl add_commute)
+done
+
+lemma sumr_offset:
+  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
+  shows "(\<Sum>m=0..<n. f(m+k)) = setsum f {0..<n+k} - setsum f {0..<k}"
+by (simp add: sumr_offset3)
+
+lemma sumr_offset2:
+ "\<forall>f. (\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}"
+by (simp add: sumr_offset)
+
+lemma sumr_offset4:
+  "\<forall>n f. setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}"
+by (clarify, rule sumr_offset3)
+
+(*
+lemma sumr_from_1_from_0: "0 < n ==>
+      (\<Sum>n=Suc 0 ..< Suc n. if even(n) then 0 else
+             ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n =
+      (\<Sum>n=0..<Suc n. if even(n) then 0 else
+             ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n"
+by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto)
+*)
+
+subsection{* Infinite Sums, by the Properties of Limits*}
+
+(*----------------------
+   suminf is the sum   
+ ---------------------*)
+lemma sums_summable: "f sums l ==> summable f"
+by (simp add: sums_def summable_def, blast)
+
+lemma summable_sums: "summable f ==> f sums (suminf f)"
+apply (simp add: summable_def suminf_def sums_def)
+apply (blast intro: theI LIMSEQ_unique)
+done
+
+lemma summable_sumr_LIMSEQ_suminf: 
+     "summable f ==> (%n. setsum f {0..<n}) ----> (suminf f)"
+by (rule summable_sums [unfolded sums_def])
+
+(*-------------------
+    sum is unique                    
+ ------------------*)
+lemma sums_unique: "f sums s ==> (s = suminf f)"
+apply (frule sums_summable [THEN summable_sums])
+apply (auto intro!: LIMSEQ_unique simp add: sums_def)
+done
+
+lemma sums_split_initial_segment: "f sums s ==> 
+  (%n. f(n + k)) sums (s - (SUM i = 0..< k. f i))"
+  apply (unfold sums_def);
+  apply (simp add: sumr_offset); 
+  apply (rule LIMSEQ_diff_const)
+  apply (rule LIMSEQ_ignore_initial_segment)
+  apply assumption
+done
+
+lemma summable_ignore_initial_segment: "summable f ==> 
+    summable (%n. f(n + k))"
+  apply (unfold summable_def)
+  apply (auto intro: sums_split_initial_segment)
+done
+
+lemma suminf_minus_initial_segment: "summable f ==>
+    suminf f = s ==> suminf (%n. f(n + k)) = s - (SUM i = 0..< k. f i)"
+  apply (frule summable_ignore_initial_segment)
+  apply (rule sums_unique [THEN sym])
+  apply (frule summable_sums)
+  apply (rule sums_split_initial_segment)
+  apply auto
+done
+
+lemma suminf_split_initial_segment: "summable f ==> 
+    suminf f = (SUM i = 0..< k. f i) + suminf (%n. f(n + k))"
+by (auto simp add: suminf_minus_initial_segment)
+
+lemma series_zero: 
+     "(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (setsum f {0..<n})"
+apply (simp add: sums_def LIMSEQ_def diff_minus[symmetric], safe)
+apply (rule_tac x = n in exI)
+apply (clarsimp simp add:setsum_diff[symmetric] cong:setsum_ivl_cong)
+done
+
+lemma sums_zero: "(\<lambda>n. 0) sums 0"
+unfolding sums_def by (simp add: LIMSEQ_const)
+
+lemma summable_zero: "summable (\<lambda>n. 0)"
+by (rule sums_zero [THEN sums_summable])
+
+lemma suminf_zero: "suminf (\<lambda>n. 0) = 0"
+by (rule sums_zero [THEN sums_unique, symmetric])
+  
+lemma (in bounded_linear) sums:
+  "(\<lambda>n. X n) sums a \<Longrightarrow> (\<lambda>n. f (X n)) sums (f a)"
+unfolding sums_def by (drule LIMSEQ, simp only: setsum)
+
+lemma (in bounded_linear) summable:
+  "summable (\<lambda>n. X n) \<Longrightarrow> summable (\<lambda>n. f (X n))"
+unfolding summable_def by (auto intro: sums)
+
+lemma (in bounded_linear) suminf:
+  "summable (\<lambda>n. X n) \<Longrightarrow> f (\<Sum>n. X n) = (\<Sum>n. f (X n))"
+by (intro sums_unique sums summable_sums)
+
+lemma sums_mult:
+  fixes c :: "'a::real_normed_algebra"
+  shows "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)"
+by (rule mult_right.sums)
+
+lemma summable_mult:
+  fixes c :: "'a::real_normed_algebra"
+  shows "summable f \<Longrightarrow> summable (%n. c * f n)"
+by (rule mult_right.summable)
+
+lemma suminf_mult:
+  fixes c :: "'a::real_normed_algebra"
+  shows "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f";
+by (rule mult_right.suminf [symmetric])
+
+lemma sums_mult2:
+  fixes c :: "'a::real_normed_algebra"
+  shows "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)"
+by (rule mult_left.sums)
+
+lemma summable_mult2:
+  fixes c :: "'a::real_normed_algebra"
+  shows "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)"
+by (rule mult_left.summable)
+
+lemma suminf_mult2:
+  fixes c :: "'a::real_normed_algebra"
+  shows "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)"
+by (rule mult_left.suminf)
+
+lemma sums_divide:
+  fixes c :: "'a::real_normed_field"
+  shows "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)"
+by (rule divide.sums)
+
+lemma summable_divide:
+  fixes c :: "'a::real_normed_field"
+  shows "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)"
+by (rule divide.summable)
+
+lemma suminf_divide:
+  fixes c :: "'a::real_normed_field"
+  shows "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c"
+by (rule divide.suminf [symmetric])
+
+lemma sums_add: "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n + Y n) sums (a + b)"
+unfolding sums_def by (simp add: setsum_addf LIMSEQ_add)
+
+lemma summable_add: "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n + Y n)"
+unfolding summable_def by (auto intro: sums_add)
+
+lemma suminf_add:
+  "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X + suminf Y = (\<Sum>n. X n + Y n)"
+by (intro sums_unique sums_add summable_sums)
+
+lemma sums_diff: "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n - Y n) sums (a - b)"
+unfolding sums_def by (simp add: setsum_subtractf LIMSEQ_diff)
+
+lemma summable_diff: "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n - Y n)"
+unfolding summable_def by (auto intro: sums_diff)
+
+lemma suminf_diff:
+  "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X - suminf Y = (\<Sum>n. X n - Y n)"
+by (intro sums_unique sums_diff summable_sums)
+
+lemma sums_minus: "X sums a ==> (\<lambda>n. - X n) sums (- a)"
+unfolding sums_def by (simp add: setsum_negf LIMSEQ_minus)
+
+lemma summable_minus: "summable X \<Longrightarrow> summable (\<lambda>n. - X n)"
+unfolding summable_def by (auto intro: sums_minus)
+
+lemma suminf_minus: "summable X \<Longrightarrow> (\<Sum>n. - X n) = - (\<Sum>n. X n)"
+by (intro sums_unique [symmetric] sums_minus summable_sums)
+
+lemma sums_group:
+     "[|summable f; 0 < k |] ==> (%n. setsum f {n*k..<n*k+k}) sums (suminf f)"
+apply (drule summable_sums)
+apply (simp only: sums_def sumr_group)
+apply (unfold LIMSEQ_def, safe)
+apply (drule_tac x="r" in spec, safe)
+apply (rule_tac x="no" in exI, safe)
+apply (drule_tac x="n*k" in spec)
+apply (erule mp)
+apply (erule order_trans)
+apply simp
+done
+
+text{*A summable series of positive terms has limit that is at least as
+great as any partial sum.*}
+
+lemma series_pos_le:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 \<le> f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} \<le> suminf f"
+apply (drule summable_sums)
+apply (simp add: sums_def)
+apply (cut_tac k = "setsum f {0..<n}" in LIMSEQ_const)
+apply (erule LIMSEQ_le, blast)
+apply (rule_tac x="n" in exI, clarify)
+apply (rule setsum_mono2)
+apply auto
+done
+
+lemma series_pos_less:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 < f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} < suminf f"
+apply (rule_tac y="setsum f {0..<Suc n}" in order_less_le_trans)
+apply simp
+apply (erule series_pos_le)
+apply (simp add: order_less_imp_le)
+done
+
+lemma suminf_gt_zero:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>summable f; \<forall>n. 0 < f n\<rbrakk> \<Longrightarrow> 0 < suminf f"
+by (drule_tac n="0" in series_pos_less, simp_all)
+
+lemma suminf_ge_zero:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>summable f; \<forall>n. 0 \<le> f n\<rbrakk> \<Longrightarrow> 0 \<le> suminf f"
+by (drule_tac n="0" in series_pos_le, simp_all)
+
+lemma sumr_pos_lt_pair:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>summable f;
+        \<forall>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk>
+      \<Longrightarrow> setsum f {0..<k} < suminf f"
+apply (subst suminf_split_initial_segment [where k="k"])
+apply assumption
+apply simp
+apply (drule_tac k="k" in summable_ignore_initial_segment)
+apply (drule_tac k="Suc (Suc 0)" in sums_group, simp)
+apply simp
+apply (frule sums_unique)
+apply (drule sums_summable)
+apply simp
+apply (erule suminf_gt_zero)
+apply (simp add: add_ac)
+done
+
+text{*Sum of a geometric progression.*}
+
+lemmas sumr_geometric = geometric_sum [where 'a = real]
+
+lemma geometric_sums:
+  fixes x :: "'a::{real_normed_field,recpower}"
+  shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) sums (1 / (1 - x))"
+proof -
+  assume less_1: "norm x < 1"
+  hence neq_1: "x \<noteq> 1" by auto
+  hence neq_0: "x - 1 \<noteq> 0" by simp
+  from less_1 have lim_0: "(\<lambda>n. x ^ n) ----> 0"
+    by (rule LIMSEQ_power_zero)
+  hence "(\<lambda>n. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x - 1)"
+    using neq_0 by (intro LIMSEQ_divide LIMSEQ_diff LIMSEQ_const)
+  hence "(\<lambda>n. (x ^ n - 1) / (x - 1)) ----> 1 / (1 - x)"
+    by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib)
+  thus "(\<lambda>n. x ^ n) sums (1 / (1 - x))"
+    by (simp add: sums_def geometric_sum neq_1)
+qed
+
+lemma summable_geometric:
+  fixes x :: "'a::{real_normed_field,recpower}"
+  shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)"
+by (rule geometric_sums [THEN sums_summable])
+
+text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}
+
+lemma summable_convergent_sumr_iff:
+ "summable f = convergent (%n. setsum f {0..<n})"
+by (simp add: summable_def sums_def convergent_def)
+
+lemma summable_LIMSEQ_zero: "summable f \<Longrightarrow> f ----> 0"
+apply (drule summable_convergent_sumr_iff [THEN iffD1])
+apply (drule convergent_Cauchy)
+apply (simp only: Cauchy_def LIMSEQ_def, safe)
+apply (drule_tac x="r" in spec, safe)
+apply (rule_tac x="M" in exI, safe)
+apply (drule_tac x="Suc n" in spec, simp)
+apply (drule_tac x="n" in spec, simp)
+done
+
+lemma summable_Cauchy:
+     "summable (f::nat \<Rightarrow> 'a::banach) =  
+      (\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. norm (setsum f {m..<n}) < e)"
+apply (simp only: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def, safe)
+apply (drule spec, drule (1) mp)
+apply (erule exE, rule_tac x="M" in exI, clarify)
+apply (rule_tac x="m" and y="n" in linorder_le_cases)
+apply (frule (1) order_trans)
+apply (drule_tac x="n" in spec, drule (1) mp)
+apply (drule_tac x="m" in spec, drule (1) mp)
+apply (simp add: setsum_diff [symmetric])
+apply simp
+apply (drule spec, drule (1) mp)
+apply (erule exE, rule_tac x="N" in exI, clarify)
+apply (rule_tac x="m" and y="n" in linorder_le_cases)
+apply (subst norm_minus_commute)
+apply (simp add: setsum_diff [symmetric])
+apply (simp add: setsum_diff [symmetric])
+done
+
+text{*Comparison test*}
+
+lemma norm_setsum:
+  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
+  shows "norm (setsum f A) \<le> (\<Sum>i\<in>A. norm (f i))"
+apply (case_tac "finite A")
+apply (erule finite_induct)
+apply simp
+apply simp
+apply (erule order_trans [OF norm_triangle_ineq add_left_mono])
+apply simp
+done
+
+lemma summable_comparison_test:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f"
+apply (simp add: summable_Cauchy, safe)
+apply (drule_tac x="e" in spec, safe)
+apply (rule_tac x = "N + Na" in exI, safe)
+apply (rotate_tac 2)
+apply (drule_tac x = m in spec)
+apply (auto, rotate_tac 2, drule_tac x = n in spec)
+apply (rule_tac y = "\<Sum>k=m..<n. norm (f k)" in order_le_less_trans)
+apply (rule norm_setsum)
+apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans)
+apply (auto intro: setsum_mono simp add: abs_less_iff)
+done
+
+lemma summable_norm_comparison_test:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk>
+         \<Longrightarrow> summable (\<lambda>n. norm (f n))"
+apply (rule summable_comparison_test)
+apply (auto)
+done
+
+lemma summable_rabs_comparison_test:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)"
+apply (rule summable_comparison_test)
+apply (auto)
+done
+
+text{*Summability of geometric series for real algebras*}
+
+lemma complete_algebra_summable_geometric:
+  fixes x :: "'a::{real_normed_algebra_1,banach,recpower}"
+  shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)"
+proof (rule summable_comparison_test)
+  show "\<exists>N. \<forall>n\<ge>N. norm (x ^ n) \<le> norm x ^ n"
+    by (simp add: norm_power_ineq)
+  show "norm x < 1 \<Longrightarrow> summable (\<lambda>n. norm x ^ n)"
+    by (simp add: summable_geometric)
+qed
+
+text{*Limit comparison property for series (c.f. jrh)*}
+
+lemma summable_le:
+  fixes f g :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>\<forall>n. f n \<le> g n; summable f; summable g\<rbrakk> \<Longrightarrow> suminf f \<le> suminf g"
+apply (drule summable_sums)+
+apply (simp only: sums_def, erule (1) LIMSEQ_le)
+apply (rule exI)
+apply (auto intro!: setsum_mono)
+done
+
+lemma summable_le2:
+  fixes f g :: "nat \<Rightarrow> real"
+  shows "\<lbrakk>\<forall>n. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f \<and> suminf f \<le> suminf g"
+apply (subgoal_tac "summable f")
+apply (auto intro!: summable_le)
+apply (simp add: abs_le_iff)
+apply (rule_tac g="g" in summable_comparison_test, simp_all)
+done
+
+(* specialisation for the common 0 case *)
+lemma suminf_0_le:
+  fixes f::"nat\<Rightarrow>real"
+  assumes gt0: "\<forall>n. 0 \<le> f n" and sm: "summable f"
+  shows "0 \<le> suminf f"
+proof -
+  let ?g = "(\<lambda>n. (0::real))"
+  from gt0 have "\<forall>n. ?g n \<le> f n" by simp
+  moreover have "summable ?g" by (rule summable_zero)
+  moreover from sm have "summable f" .
+  ultimately have "suminf ?g \<le> suminf f" by (rule summable_le)
+  then show "0 \<le> suminf f" by (simp add: suminf_zero)
+qed 
+
+
+text{*Absolute convergence imples normal convergence*}
+lemma summable_norm_cancel:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f"
+apply (simp only: summable_Cauchy, safe)
+apply (drule_tac x="e" in spec, safe)
+apply (rule_tac x="N" in exI, safe)
+apply (drule_tac x="m" in spec, safe)
+apply (rule order_le_less_trans [OF norm_setsum])
+apply (rule order_le_less_trans [OF abs_ge_self])
+apply simp
+done
+
+lemma summable_rabs_cancel:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f"
+by (rule summable_norm_cancel, simp)
+
+text{*Absolute convergence of series*}
+lemma summable_norm:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))"
+by (auto intro: LIMSEQ_le LIMSEQ_norm summable_norm_cancel
+                summable_sumr_LIMSEQ_suminf norm_setsum)
+
+lemma summable_rabs:
+  fixes f :: "nat \<Rightarrow> real"
+  shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)"
+by (fold real_norm_def, rule summable_norm)
+
+subsection{* The Ratio Test*}
+
+lemma norm_ratiotest_lemma:
+  fixes x y :: "'a::real_normed_vector"
+  shows "\<lbrakk>c \<le> 0; norm x \<le> c * norm y\<rbrakk> \<Longrightarrow> x = 0"
+apply (subgoal_tac "norm x \<le> 0", simp)
+apply (erule order_trans)
+apply (simp add: mult_le_0_iff)
+done
+
+lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)"
+by (erule norm_ratiotest_lemma, simp)
+
+lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)"
+apply (drule le_imp_less_or_eq)
+apply (auto dest: less_imp_Suc_add)
+done
+
+lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)"
+by (auto simp add: le_Suc_ex)
+
+(*All this trouble just to get 0<c *)
+lemma ratio_test_lemma2:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "\<lbrakk>\<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> 0 < c \<or> summable f"
+apply (simp (no_asm) add: linorder_not_le [symmetric])
+apply (simp add: summable_Cauchy)
+apply (safe, subgoal_tac "\<forall>n. N < n --> f (n) = 0")
+ prefer 2
+ apply clarify
+ apply(erule_tac x = "n - 1" in allE)
+ apply (simp add:diff_Suc split:nat.splits)
+ apply (blast intro: norm_ratiotest_lemma)
+apply (rule_tac x = "Suc N" in exI, clarify)
+apply(simp cong:setsum_ivl_cong)
+done
+
+lemma ratio_test:
+  fixes f :: "nat \<Rightarrow> 'a::banach"
+  shows "\<lbrakk>c < 1; \<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> summable f"
+apply (frule ratio_test_lemma2, auto)
+apply (rule_tac g = "%n. (norm (f N) / (c ^ N))*c ^ n" 
+       in summable_comparison_test)
+apply (rule_tac x = N in exI, safe)
+apply (drule le_Suc_ex_iff [THEN iffD1])
+apply (auto simp add: power_add field_power_not_zero)
+apply (induct_tac "na", auto)
+apply (rule_tac y = "c * norm (f (N + n))" in order_trans)
+apply (auto intro: mult_right_mono simp add: summable_def)
+apply (simp add: mult_ac)
+apply (rule_tac x = "norm (f N) * (1/ (1 - c)) / (c ^ N)" in exI)
+apply (rule sums_divide) 
+apply (rule sums_mult)
+apply (auto intro!: geometric_sums)
+done
+
+subsection {* Cauchy Product Formula *}
+
+(* Proof based on Analysis WebNotes: Chapter 07, Class 41
+http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm *)
+
+lemma setsum_triangle_reindex:
+  fixes n :: nat
+  shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k=0..<n. \<Sum>i=0..k. f i (k - i))"
+proof -
+  have "(\<Sum>(i, j)\<in>{(i, j). i + j < n}. f i j) =
+    (\<Sum>(k, i)\<in>(SIGMA k:{0..<n}. {0..k}). f i (k - i))"
+  proof (rule setsum_reindex_cong)
+    show "inj_on (\<lambda>(k,i). (i, k - i)) (SIGMA k:{0..<n}. {0..k})"
+      by (rule inj_on_inverseI [where g="\<lambda>(i,j). (i+j, i)"], auto)
+    show "{(i,j). i + j < n} = (\<lambda>(k,i). (i, k - i)) ` (SIGMA k:{0..<n}. {0..k})"
+      by (safe, rule_tac x="(a+b,a)" in image_eqI, auto)
+    show "\<And>a. (\<lambda>(k, i). f i (k - i)) a = split f ((\<lambda>(k, i). (i, k - i)) a)"
+      by clarify
+  qed
+  thus ?thesis by (simp add: setsum_Sigma)
+qed
+
+lemma Cauchy_product_sums:
+  fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
+  assumes a: "summable (\<lambda>k. norm (a k))"
+  assumes b: "summable (\<lambda>k. norm (b k))"
+  shows "(\<lambda>k. \<Sum>i=0..k. a i * b (k - i)) sums ((\<Sum>k. a k) * (\<Sum>k. b k))"
+proof -
+  let ?S1 = "\<lambda>n::nat. {0..<n} \<times> {0..<n}"
+  let ?S2 = "\<lambda>n::nat. {(i,j). i + j < n}"
+  have S1_mono: "\<And>m n. m \<le> n \<Longrightarrow> ?S1 m \<subseteq> ?S1 n" by auto
+  have S2_le_S1: "\<And>n. ?S2 n \<subseteq> ?S1 n" by auto
+  have S1_le_S2: "\<And>n. ?S1 (n div 2) \<subseteq> ?S2 n" by auto
+  have finite_S1: "\<And>n. finite (?S1 n)" by simp
+  with S2_le_S1 have finite_S2: "\<And>n. finite (?S2 n)" by (rule finite_subset)
+
+  let ?g = "\<lambda>(i,j). a i * b j"
+  let ?f = "\<lambda>(i,j). norm (a i) * norm (b j)"
+  have f_nonneg: "\<And>x. 0 \<le> ?f x"
+    by (auto simp add: mult_nonneg_nonneg)
+  hence norm_setsum_f: "\<And>A. norm (setsum ?f A) = setsum ?f A"
+    unfolding real_norm_def
+    by (simp only: abs_of_nonneg setsum_nonneg [rule_format])
+
+  have "(\<lambda>n. (\<Sum>k=0..<n. a k) * (\<Sum>k=0..<n. b k))
+           ----> (\<Sum>k. a k) * (\<Sum>k. b k)"
+    by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf
+        summable_norm_cancel [OF a] summable_norm_cancel [OF b])
+  hence 1: "(\<lambda>n. setsum ?g (?S1 n)) ----> (\<Sum>k. a k) * (\<Sum>k. b k)"
+    by (simp only: setsum_product setsum_Sigma [rule_format]
+                   finite_atLeastLessThan)
+
+  have "(\<lambda>n. (\<Sum>k=0..<n. norm (a k)) * (\<Sum>k=0..<n. norm (b k)))
+       ----> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))"
+    using a b by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf)
+  hence "(\<lambda>n. setsum ?f (?S1 n)) ----> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))"
+    by (simp only: setsum_product setsum_Sigma [rule_format]
+                   finite_atLeastLessThan)
+  hence "convergent (\<lambda>n. setsum ?f (?S1 n))"
+    by (rule convergentI)
+  hence Cauchy: "Cauchy (\<lambda>n. setsum ?f (?S1 n))"
+    by (rule convergent_Cauchy)
+  have "Zseq (\<lambda>n. setsum ?f (?S1 n - ?S2 n))"
+  proof (rule ZseqI, simp only: norm_setsum_f)
+    fix r :: real
+    assume r: "0 < r"
+    from CauchyD [OF Cauchy r] obtain N
+    where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (setsum ?f (?S1 m) - setsum ?f (?S1 n)) < r" ..
+    hence "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> norm (setsum ?f (?S1 m - ?S1 n)) < r"
+      by (simp only: setsum_diff finite_S1 S1_mono)
+    hence N: "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> setsum ?f (?S1 m - ?S1 n) < r"
+      by (simp only: norm_setsum_f)
+    show "\<exists>N. \<forall>n\<ge>N. setsum ?f (?S1 n - ?S2 n) < r"
+    proof (intro exI allI impI)
+      fix n assume "2 * N \<le> n"
+      hence n: "N \<le> n div 2" by simp
+      have "setsum ?f (?S1 n - ?S2 n) \<le> setsum ?f (?S1 n - ?S1 (n div 2))"
+        by (intro setsum_mono2 finite_Diff finite_S1 f_nonneg
+                  Diff_mono subset_refl S1_le_S2)
+      also have "\<dots> < r"
+        using n div_le_dividend by (rule N)
+      finally show "setsum ?f (?S1 n - ?S2 n) < r" .
+    qed
+  qed
+  hence "Zseq (\<lambda>n. setsum ?g (?S1 n - ?S2 n))"
+    apply (rule Zseq_le [rule_format])
+    apply (simp only: norm_setsum_f)
+    apply (rule order_trans [OF norm_setsum setsum_mono])
+    apply (auto simp add: norm_mult_ineq)
+    done
+  hence 2: "(\<lambda>n. setsum ?g (?S1 n) - setsum ?g (?S2 n)) ----> 0"
+    by (simp only: LIMSEQ_Zseq_iff setsum_diff finite_S1 S2_le_S1 diff_0_right)
+
+  with 1 have "(\<lambda>n. setsum ?g (?S2 n)) ----> (\<Sum>k. a k) * (\<Sum>k. b k)"
+    by (rule LIMSEQ_diff_approach_zero2)
+  thus ?thesis by (simp only: sums_def setsum_triangle_reindex)
+qed
+
+lemma Cauchy_product:
+  fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
+  assumes a: "summable (\<lambda>k. norm (a k))"
+  assumes b: "summable (\<lambda>k. norm (b k))"
+  shows "(\<Sum>k. a k) * (\<Sum>k. b k) = (\<Sum>k. \<Sum>i=0..k. a i * b (k - i))"
+using a b
+by (rule Cauchy_product_sums [THEN sums_unique])
+
+end