src/HOL/Tools/hologic.ML
changeset 28952 15a4b2cf8c34
parent 27325 70e4eb732fa9
child 30304 d8e4cd2ac2a1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/hologic.ML	Wed Dec 03 15:58:44 2008 +0100
@@ -0,0 +1,568 @@
+(*  Title:      HOL/hologic.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson and Markus Wenzel
+
+Abstract syntax operations for HOL.
+*)
+
+signature HOLOGIC =
+sig
+  val typeS: sort
+  val typeT: typ
+  val boolN: string
+  val boolT: typ
+  val true_const: term
+  val false_const: term
+  val mk_setT: typ -> typ
+  val dest_setT: typ -> typ
+  val Trueprop: term
+  val mk_Trueprop: term -> term
+  val dest_Trueprop: term -> term
+  val conj_intr: thm -> thm -> thm
+  val conj_elim: thm -> thm * thm
+  val conj_elims: thm -> thm list
+  val conj: term
+  val disj: term
+  val imp: term
+  val Not: term
+  val mk_conj: term * term -> term
+  val mk_disj: term * term -> term
+  val mk_imp: term * term -> term
+  val mk_not: term -> term
+  val dest_conj: term -> term list
+  val dest_disj: term -> term list
+  val disjuncts: term -> term list
+  val dest_imp: term -> term * term
+  val dest_not: term -> term
+  val eq_const: typ -> term
+  val mk_eq: term * term -> term
+  val dest_eq: term -> term * term
+  val all_const: typ -> term
+  val mk_all: string * typ * term -> term
+  val list_all: (string * typ) list * term -> term
+  val exists_const: typ -> term
+  val mk_exists: string * typ * term -> term
+  val choice_const: typ -> term
+  val Collect_const: typ -> term
+  val mk_Collect: string * typ * term -> term
+  val class_eq: string
+  val mk_mem: term * term -> term
+  val dest_mem: term -> term * term
+  val mk_UNIV: typ -> term
+  val mk_binop: string -> term * term -> term
+  val mk_binrel: string -> term * term -> term
+  val dest_bin: string -> typ -> term -> term * term
+  val unitT: typ
+  val is_unitT: typ -> bool
+  val unit: term
+  val is_unit: term -> bool
+  val mk_prodT: typ * typ -> typ
+  val dest_prodT: typ -> typ * typ
+  val pair_const: typ -> typ -> term
+  val mk_prod: term * term -> term
+  val dest_prod: term -> term * term
+  val mk_fst: term -> term
+  val mk_snd: term -> term
+  val split_const: typ * typ * typ -> term
+  val mk_split: term -> term
+  val prodT_factors: typ -> typ list
+  val mk_tuple: typ -> term list -> term
+  val dest_tuple: term -> term list
+  val ap_split: typ -> typ -> term -> term
+  val prod_factors: term -> int list list
+  val dest_tuple': int list list -> term -> term list
+  val prodT_factors': int list list -> typ -> typ list
+  val ap_split': int list list -> typ -> typ -> term -> term
+  val mk_tuple': int list list -> typ -> term list -> term
+  val mk_tupleT: int list list -> typ list -> typ
+  val strip_split: term -> term * typ list * int list list
+  val natT: typ
+  val zero: term
+  val is_zero: term -> bool
+  val mk_Suc: term -> term
+  val dest_Suc: term -> term
+  val Suc_zero: term
+  val mk_nat: int -> term
+  val dest_nat: term -> int
+  val class_size: string
+  val size_const: typ -> term
+  val indexT: typ
+  val intT: typ
+  val pls_const: term
+  val min_const: term
+  val bit0_const: term
+  val bit1_const: term
+  val mk_bit: int -> term
+  val dest_bit: term -> int
+  val mk_numeral: int -> term
+  val dest_numeral: term -> int
+  val number_of_const: typ -> term
+  val add_numerals: term -> (term * typ) list -> (term * typ) list
+  val mk_number: typ -> int -> term
+  val dest_number: term -> typ * int
+  val realT: typ
+  val nibbleT: typ
+  val mk_nibble: int -> term
+  val dest_nibble: term -> int
+  val charT: typ
+  val mk_char: int -> term
+  val dest_char: term -> int
+  val listT: typ -> typ
+  val nil_const: typ -> term
+  val cons_const: typ -> term
+  val mk_list: typ -> term list -> term
+  val dest_list: term -> term list
+  val stringT: typ
+  val mk_string: string -> term
+  val dest_string: term -> string
+end;
+
+structure HOLogic: HOLOGIC =
+struct
+
+(* HOL syntax *)
+
+val typeS: sort = ["HOL.type"];
+val typeT = TypeInfer.anyT typeS;
+
+
+(* bool and set *)
+
+val boolN = "bool";
+val boolT = Type (boolN, []);
+
+val true_const =  Const ("True", boolT);
+val false_const = Const ("False", boolT);
+
+fun mk_setT T = T --> boolT;
+
+fun dest_setT (Type ("fun", [T, Type ("bool", [])])) = T
+  | dest_setT T = raise TYPE ("dest_setT: set type expected", [T], []);
+
+
+(* logic *)
+
+val Trueprop = Const ("Trueprop", boolT --> propT);
+
+fun mk_Trueprop P = Trueprop $ P;
+
+fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
+  | dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);
+
+fun conj_intr thP thQ =
+  let
+    val (P, Q) = pairself (ObjectLogic.dest_judgment o Thm.cprop_of) (thP, thQ)
+      handle CTERM (msg, _) => raise THM (msg, 0, [thP, thQ]);
+    val inst = Thm.instantiate ([], [(@{cpat "?P::bool"}, P), (@{cpat "?Q::bool"}, Q)]);
+  in Drule.implies_elim_list (inst @{thm conjI}) [thP, thQ] end;
+
+fun conj_elim thPQ =
+  let
+    val (P, Q) = Thm.dest_binop (ObjectLogic.dest_judgment (Thm.cprop_of thPQ))
+      handle CTERM (msg, _) => raise THM (msg, 0, [thPQ]);
+    val inst = Thm.instantiate ([], [(@{cpat "?P::bool"}, P), (@{cpat "?Q::bool"}, Q)]);
+    val thP = Thm.implies_elim (inst @{thm conjunct1}) thPQ;
+    val thQ = Thm.implies_elim (inst @{thm conjunct2}) thPQ;
+  in (thP, thQ) end;
+
+fun conj_elims th =
+  let val (th1, th2) = conj_elim th
+  in conj_elims th1 @ conj_elims th2 end handle THM _ => [th];
+
+val conj = @{term "op &"}
+and disj = @{term "op |"}
+and imp = @{term "op -->"}
+and Not = @{term "Not"};
+
+fun mk_conj (t1, t2) = conj $ t1 $ t2
+and mk_disj (t1, t2) = disj $ t1 $ t2
+and mk_imp (t1, t2) = imp $ t1 $ t2
+and mk_not t = Not $ t;
+
+fun dest_conj (Const ("op &", _) $ t $ t') = t :: dest_conj t'
+  | dest_conj t = [t];
+
+fun dest_disj (Const ("op |", _) $ t $ t') = t :: dest_disj t'
+  | dest_disj t = [t];
+
+(*Like dest_disj, but flattens disjunctions however nested*)
+fun disjuncts_aux (Const ("op |", _) $ t $ t') disjs = disjuncts_aux t (disjuncts_aux t' disjs)
+  | disjuncts_aux t disjs = t::disjs;
+
+fun disjuncts t = disjuncts_aux t [];
+
+fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
+  | dest_imp  t = raise TERM ("dest_imp", [t]);
+
+fun dest_not (Const ("Not", _) $ t) = t
+  | dest_not t = raise TERM ("dest_not", [t]);
+
+fun eq_const T = Const ("op =", [T, T] ---> boolT);
+fun mk_eq (t, u) = eq_const (fastype_of t) $ t $ u;
+
+fun dest_eq (Const ("op =", _) $ lhs $ rhs) = (lhs, rhs)
+  | dest_eq t = raise TERM ("dest_eq", [t])
+
+fun all_const T = Const ("All", [T --> boolT] ---> boolT);
+fun mk_all (x, T, P) = all_const T $ absfree (x, T, P);
+fun list_all (xs, t) = fold_rev (fn (x, T) => fn P => all_const T $ Abs (x, T, P)) xs t;
+
+fun exists_const T = Const ("Ex", [T --> boolT] ---> boolT);
+fun mk_exists (x, T, P) = exists_const T $ absfree (x, T, P);
+
+fun choice_const T = Const("Hilbert_Choice.Eps", (T --> boolT) --> T);
+
+fun Collect_const T = Const ("Collect", [T --> boolT] ---> mk_setT T);
+fun mk_Collect (a, T, t) = Collect_const T $ absfree (a, T, t);
+
+val class_eq = "HOL.eq";
+
+fun mk_mem (x, A) =
+  let val setT = fastype_of A in
+    Const ("op :", [dest_setT setT, setT] ---> boolT) $ x $ A
+  end;
+
+fun dest_mem (Const ("op :", _) $ x $ A) = (x, A)
+  | dest_mem t = raise TERM ("dest_mem", [t]);
+
+fun mk_UNIV T = Const ("UNIV", mk_setT T);
+
+
+(* binary operations and relations *)
+
+fun mk_binop c (t, u) =
+  let val T = fastype_of t in
+    Const (c, [T, T] ---> T) $ t $ u
+  end;
+
+fun mk_binrel c (t, u) =
+  let val T = fastype_of t in
+    Const (c, [T, T] ---> boolT) $ t $ u
+  end;
+
+(*destruct the application of a binary operator. The dummyT case is a crude
+  way of handling polymorphic operators.*)
+fun dest_bin c T (tm as Const (c', Type ("fun", [T', _])) $ t $ u) =
+      if c = c' andalso (T=T' orelse T=dummyT) then (t, u)
+      else raise TERM ("dest_bin " ^ c, [tm])
+  | dest_bin c _ tm = raise TERM ("dest_bin " ^ c, [tm]);
+
+
+(* unit *)
+
+val unitT = Type ("Product_Type.unit", []);
+
+fun is_unitT (Type ("Product_Type.unit", [])) = true
+  | is_unitT _ = false;
+
+val unit = Const ("Product_Type.Unity", unitT);
+
+fun is_unit (Const ("Product_Type.Unity", _)) = true
+  | is_unit _ = false;
+
+
+(* prod *)
+
+fun mk_prodT (T1, T2) = Type ("*", [T1, T2]);
+
+fun dest_prodT (Type ("*", [T1, T2])) = (T1, T2)
+  | dest_prodT T = raise TYPE ("dest_prodT", [T], []);
+
+fun pair_const T1 T2 = Const ("Pair", [T1, T2] ---> mk_prodT (T1, T2));
+
+fun mk_prod (t1, t2) =
+  let val T1 = fastype_of t1 and T2 = fastype_of t2 in
+    pair_const T1 T2 $ t1 $ t2
+  end;
+
+fun dest_prod (Const ("Pair", _) $ t1 $ t2) = (t1, t2)
+  | dest_prod t = raise TERM ("dest_prod", [t]);
+
+fun mk_fst p =
+  let val pT = fastype_of p in
+    Const ("fst", pT --> fst (dest_prodT pT)) $ p
+  end;
+
+fun mk_snd p =
+  let val pT = fastype_of p in
+    Const ("snd", pT --> snd (dest_prodT pT)) $ p
+  end;
+
+fun split_const (A, B, C) =
+  Const ("split", (A --> B --> C) --> mk_prodT (A, B) --> C);
+
+fun mk_split t =
+  (case Term.fastype_of t of
+    T as (Type ("fun", [A, Type ("fun", [B, C])])) =>
+      Const ("split", T --> mk_prodT (A, B) --> C) $ t
+  | _ => raise TERM ("mk_split: bad body type", [t]));
+
+(*Maps the type T1 * ... * Tn to [T1, ..., Tn], however nested*)
+fun prodT_factors (Type ("*", [T1, T2])) = prodT_factors T1 @ prodT_factors T2
+  | prodT_factors T = [T];
+
+(*Makes a nested tuple from a list, following the product type structure*)
+fun mk_tuple (Type ("*", [T1, T2])) tms =
+        mk_prod (mk_tuple T1 tms,
+                 mk_tuple T2 (Library.drop (length (prodT_factors T1), tms)))
+  | mk_tuple T (t::_) = t;
+
+fun dest_tuple (Const ("Pair", _) $ t $ u) = dest_tuple t @ dest_tuple u
+  | dest_tuple t = [t];
+
+(*In ap_split S T u, term u expects separate arguments for the factors of S,
+  with result type T.  The call creates a new term expecting one argument
+  of type S.*)
+fun ap_split T T3 u =
+  let
+    fun ap (T :: Ts) =
+          (case T of
+             Type ("*", [T1, T2]) =>
+               split_const (T1, T2, Ts ---> T3) $ ap (T1 :: T2 :: Ts)
+           | _ => Abs ("x", T, ap Ts))
+      | ap [] =
+          let val k = length (prodT_factors T)
+          in list_comb (incr_boundvars k u, map Bound (k - 1 downto 0)) end
+  in ap [T] end;
+
+
+(* operations on tuples with specific arities *)
+(*
+  an "arity" of a tuple is a list of lists of integers
+  ("factors"), denoting paths to subterms that are pairs
+*)
+
+fun prod_err s = raise TERM (s ^ ": inconsistent use of products", []);
+
+fun prod_factors t =
+  let
+    fun factors p (Const ("Pair", _) $ t $ u) =
+          p :: factors (1::p) t @ factors (2::p) u
+      | factors p _ = []
+  in factors [] t end;
+
+fun dest_tuple' ps =
+  let
+    fun dest p t = if p mem ps then (case t of
+        Const ("Pair", _) $ t $ u =>
+          dest (1::p) t @ dest (2::p) u
+      | _ => prod_err "dest_tuple'") else [t]
+  in dest [] end;
+
+fun prodT_factors' ps =
+  let
+    fun factors p T = if p mem ps then (case T of
+        Type ("*", [T1, T2]) =>
+          factors (1::p) T1 @ factors (2::p) T2
+      | _ => prod_err "prodT_factors'") else [T]
+  in factors [] end;
+
+(*In ap_split' ps S T u, term u expects separate arguments for the factors of S,
+  with result type T.  The call creates a new term expecting one argument
+  of type S.*)
+fun ap_split' ps T T3 u =
+  let
+    fun ap ((p, T) :: pTs) =
+          if p mem ps then (case T of
+              Type ("*", [T1, T2]) =>
+                split_const (T1, T2, map snd pTs ---> T3) $
+                  ap ((1::p, T1) :: (2::p, T2) :: pTs)
+            | _ => prod_err "ap_split'")
+          else Abs ("x", T, ap pTs)
+      | ap [] =
+          let val k = length ps
+          in list_comb (incr_boundvars (k + 1) u, map Bound (k downto 0)) end
+  in ap [([], T)] end;
+
+fun mk_tuple' ps =
+  let
+    fun mk p T ts =
+      if p mem ps then (case T of
+          Type ("*", [T1, T2]) =>
+            let
+              val (t, ts') = mk (1::p) T1 ts;
+              val (u, ts'') = mk (2::p) T2 ts'
+            in (pair_const T1 T2 $ t $ u, ts'') end
+        | _ => prod_err "mk_tuple'")
+      else (hd ts, tl ts)
+  in fst oo mk [] end;
+
+fun mk_tupleT ps =
+  let
+    fun mk p Ts =
+      if p mem ps then
+        let
+          val (T, Ts') = mk (1::p) Ts;
+          val (U, Ts'') = mk (2::p) Ts'
+        in (mk_prodT (T, U), Ts'') end
+      else (hd Ts, tl Ts)
+  in fst o mk [] end;
+
+fun strip_split t =
+  let
+    fun strip [] qs Ts t = (t, Ts, qs)
+      | strip (p :: ps) qs Ts (Const ("split", _) $ t) =
+          strip ((1 :: p) :: (2 :: p) :: ps) (p :: qs) Ts t
+      | strip (p :: ps) qs Ts (Abs (s, T, t)) = strip ps qs (T :: Ts) t
+      | strip (p :: ps) qs Ts t = strip ps qs
+          (hd (binder_types (fastype_of1 (Ts, t))) :: Ts)
+          (incr_boundvars 1 t $ Bound 0)
+  in strip [[]] [] [] t end;
+
+
+(* nat *)
+
+val natT = Type ("nat", []);
+
+val zero = Const ("HOL.zero_class.zero", natT);
+
+fun is_zero (Const ("HOL.zero_class.zero", _)) = true
+  | is_zero _ = false;
+
+fun mk_Suc t = Const ("Suc", natT --> natT) $ t;
+
+fun dest_Suc (Const ("Suc", _) $ t) = t
+  | dest_Suc t = raise TERM ("dest_Suc", [t]);
+
+val Suc_zero = mk_Suc zero;
+
+fun mk_nat n =
+  let
+    fun mk 0 = zero
+      | mk n = mk_Suc (mk (n - 1));
+  in if n < 0 then raise TERM ("mk_nat: negative number", []) else mk n end;
+
+fun dest_nat (Const ("HOL.zero_class.zero", _)) = 0
+  | dest_nat (Const ("Suc", _) $ t) = dest_nat t + 1
+  | dest_nat t = raise TERM ("dest_nat", [t]);
+
+val class_size = "Nat.size";
+
+fun size_const T = Const ("Nat.size_class.size", T --> natT);
+
+
+(* index *)
+
+val indexT = Type ("Code_Index.index", []);
+
+
+(* binary numerals and int -- non-unique representation due to leading zeros/ones! *)
+
+val intT = Type ("Int.int", []);
+
+val pls_const = Const ("Int.Pls", intT)
+and min_const = Const ("Int.Min", intT)
+and bit0_const = Const ("Int.Bit0", intT --> intT)
+and bit1_const = Const ("Int.Bit1", intT --> intT);
+
+fun mk_bit 0 = bit0_const
+  | mk_bit 1 = bit1_const
+  | mk_bit _ = raise TERM ("mk_bit", []);
+
+fun dest_bit (Const ("Int.Bit0", _)) = 0
+  | dest_bit (Const ("Int.Bit1", _)) = 1
+  | dest_bit t = raise TERM ("dest_bit", [t]);
+
+fun mk_numeral 0 = pls_const
+  | mk_numeral ~1 = min_const
+  | mk_numeral i =
+      let val (q, r) = Integer.div_mod i 2;
+      in mk_bit r $ mk_numeral q end;
+
+fun dest_numeral (Const ("Int.Pls", _)) = 0
+  | dest_numeral (Const ("Int.Min", _)) = ~1
+  | dest_numeral (Const ("Int.Bit0", _) $ bs) = 2 * dest_numeral bs
+  | dest_numeral (Const ("Int.Bit1", _) $ bs) = 2 * dest_numeral bs + 1
+  | dest_numeral t = raise TERM ("dest_numeral", [t]);
+
+fun number_of_const T = Const ("Int.number_class.number_of", intT --> T);
+
+fun add_numerals (Const ("Int.number_class.number_of", Type (_, [_, T])) $ t) = cons (t, T)
+  | add_numerals (t $ u) = add_numerals t #> add_numerals u
+  | add_numerals (Abs (_, _, t)) = add_numerals t
+  | add_numerals _ = I;
+
+fun mk_number T 0 = Const ("HOL.zero_class.zero", T)
+  | mk_number T 1 = Const ("HOL.one_class.one", T)
+  | mk_number T i = number_of_const T $ mk_numeral i;
+
+fun dest_number (Const ("HOL.zero_class.zero", T)) = (T, 0)
+  | dest_number (Const ("HOL.one_class.one", T)) = (T, 1)
+  | dest_number (Const ("Int.number_class.number_of", Type ("fun", [_, T])) $ t) =
+      (T, dest_numeral t)
+  | dest_number t = raise TERM ("dest_number", [t]);
+
+
+(* real *)
+
+val realT = Type ("RealDef.real", []);
+
+
+(* nibble *)
+
+val nibbleT = Type ("List.nibble", []);
+
+fun mk_nibble n =
+  let val s =
+    if 0 <= n andalso n <= 9 then chr (n + ord "0")
+    else if 10 <= n andalso n <= 15 then chr (n + ord "A" - 10)
+    else raise TERM ("mk_nibble", [])
+  in Const ("List.nibble.Nibble" ^ s, nibbleT) end;
+
+fun dest_nibble t =
+  let fun err () = raise TERM ("dest_nibble", [t]) in
+    (case try (unprefix "List.nibble.Nibble" o fst o Term.dest_Const) t of
+      NONE => err ()
+    | SOME c =>
+        if size c <> 1 then err ()
+        else if "0" <= c andalso c <= "9" then ord c - ord "0"
+        else if "A" <= c andalso c <= "F" then ord c - ord "A" + 10
+        else err ())
+  end;
+
+
+(* char *)
+
+val charT = Type ("List.char", []);
+
+fun mk_char n =
+  if 0 <= n andalso n <= 255 then
+    Const ("List.char.Char", nibbleT --> nibbleT --> charT) $
+      mk_nibble (n div 16) $ mk_nibble (n mod 16)
+  else raise TERM ("mk_char", []);
+
+fun dest_char (Const ("List.char.Char", _) $ t $ u) =
+      dest_nibble t * 16 + dest_nibble u
+  | dest_char t = raise TERM ("dest_char", [t]);
+
+
+(* list *)
+
+fun listT T = Type ("List.list", [T]);
+
+fun nil_const T = Const ("List.list.Nil", listT T);
+
+fun cons_const T =
+  let val lT = listT T
+  in Const ("List.list.Cons", T --> lT --> lT) end;
+
+fun mk_list T ts =
+  let
+    val lT = listT T;
+    val Nil = Const ("List.list.Nil", lT);
+    fun Cons t u = Const ("List.list.Cons", T --> lT --> lT) $ t $ u;
+  in fold_rev Cons ts Nil end;
+
+fun dest_list (Const ("List.list.Nil", _)) = []
+  | dest_list (Const ("List.list.Cons", _) $ t $ u) = t :: dest_list u
+  | dest_list t = raise TERM ("dest_list", [t]);
+
+
+(* string *)
+
+val stringT = Type ("List.string", []);
+
+val mk_string = mk_list charT o map (mk_char o ord) o explode;
+val dest_string = implode o map (chr o dest_char) o dest_list;
+
+end;