doc-src/TutorialI/Inductive/Even.thy
changeset 25330 15bf0f47a87d
parent 23928 efee34ff4764
child 42637 381fdcab0f36
--- a/doc-src/TutorialI/Inductive/Even.thy	Wed Nov 07 16:43:01 2007 +0100
+++ b/doc-src/TutorialI/Inductive/Even.thy	Wed Nov 07 18:19:04 2007 +0100
@@ -20,10 +20,9 @@
 a set of natural numbers with the desired properties.
 *}
 
-inductive_set even :: "nat set"
-where
-  zero[intro!]: "0 \<in> even"
-| step[intro!]: "n \<in> even \<Longrightarrow> (Suc (Suc n)) \<in> even"
+inductive_set even :: "nat set" where
+zero[intro!]: "0 \<in> even" |
+step[intro!]: "n \<in> even \<Longrightarrow> (Suc (Suc n)) \<in> even"
 
 text {*
 An inductive definition consists of introduction rules.  The first one